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Abstract

This paper reports the results of a study investigating the effect of data quality on neural
network models. Neural networks have recently been applied in a wide variety of business
domains. Although databases used in many organizations have been found to contain errors,
little is known about the effect of these errors on predictions made by neural network models.
The paper uses a real-world example, the prediction of the net asset values of mutual funds, to
investigate this topic. The results of a three-factor experiment in which the fraction of data
containing errors, the amount of the data errors, and mutual fund type are found to affect the
predictive accuracy of neural networks are reported. The findings have implications for users of

neural networks working with databases containing errors.

1. Introduction
There is strong evidence (e.g., Laudon, 1986; Morey, 1982; Redman, 1992; Redman, 1995)
that data stored in organizational databases have a significant rate of errors. The effect of data
errors on the outputs of computer-based models has been investigated by a number of researchers
(e.g., Ballou and Pazer, 1985; Ballou, Pazer, Belardo, and Klein, 1987; Bansal, Kauffman, and
Weitz, 1993). This investigation builds on this prior research by examining the effect of data
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quality on neural network models. The study uses a financial application of a neural network to
examine this question.

A neural network is a type of model that can be used to predict continuously-valued outputs
or to classify observations. Neural network models have been applied to a variety of problem
domains such as the prediction of graduate student success (Hardgrave, Wilson, and Walstrom,
1994), the prediction of bank failure (Tam and Kiang, 1992), the detection of fraud in insurance
claims (Clayton, 1997), the analysis of product quality in refineries (Wadi, 1996), and the
forecasting of extended warranty claims (Wasserman and Sudijianto, 1996). Typically one has a
neural network learn about a problem by training it with examples. Training algorithms search
for a set of weights that offer the best fit with the given examples. Once trained, a network can
be used to make predictions. Although several architectures for neural networks have been
developed, the scope of this study is limited to the back propagation feedforward neural network
architecture.

In general, when claims about the predictive accuracy of neural networks are made, it is
assumed that data used to test the models are free of errors. One notable exception to the
assumption of accurate test data is the work of Bansal, Kauffman, and Weitz (1993) which
examined the predictive accuracy of neural network models designed to predict the prepayment
rate of mortgage-backed security portfolios.

An understanding of the effect of data errors on neural network models is particularly
important because the availability of inexpensive software packages for personal computers
makes the development and use of neural networks by end users feasible. Researchers have
argued that end-user computing has increased the potential for data errors in computer
applications (Boockholdt, 1989). As end users develop applications, it is possible that fewer data
validation methods such as logic tests and control totals will be in place and it is likely that less
rigorous testing will occur before applications are used in production (Corman, 1988; Davis,
1984; Davis, Adams, and Schaller, 1983).

The remaining sections of this paper present (1) a review of relevant prior research on data
quality and on financial applications of neural networks, (2) a brief explanation of back
propagation neural networks, (3) the methodology of the experiment investigating the effect of

errors in test data, (4) the results of the experiment, and (5) conclusions and suggestions for
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future research. Preliminary results from an experiment investigating the effect of errors in

training data are also presented in the last section of the paper.

2. Background
This study builds on prior research examining the effect of data errors on computer-based
models and on studies investigating the application of neural network models to the analysis of
financial instruments. Data errors are discussed in section 2.1 and financial applications of

neural networks are discussed in section 2.2.

2.1 The Effect of Data Errors on Computer-Based Models

Data quality is generally recognized as a multidimensional concept (Wand and Wang, 1996;
Wang and Strong, 1996). While no single definition of data quality has been accepted by
researchers working in this area, there is agreement that data accuracy, currency, completeness, and
consistency are important areas of concern (Agmon and Ahituv, 1987; Ballou and Pazer, 1985;
Davis and Olson, 1985; Fox, Levitin, and Redman, 1993; Huh, Keller, Redman, and Watkins,

1990; Madnick and Wang, 1992; Wand and Wang, 1996; Wang and Strong, 1996; Zmud, 1978).
This investigation adopts the conceptualization of data quality proposed by Ballou and Pazer (1985)
which includes four dimensions: accuracy, timeliness, completeness, and consistency. This study
is primarily concerned with data accuracy, defined as conformity between a recorded data value and
the corresponding actual data value.

Prior research has found that organizational databases are not in general free of errors (e.g.,
Laudon, 1986; Morey, 1982; Redman, 1992; Redman, 1995). Between one and ten percent of
data items in critical organizational databases are estimated to be inaccurate (Laudon, 1986;
Madnick and Wang, 1992; Morey, 1982; Redman, 1992). Inaccurate data have been reported in
a student loan database maintained by the U.S. Department of Education (Knight, 1992), in
records maintained by the U.S. Department of Agriculture ("Dead farmer," 1992), in records
maintained by credit reporting bureaus ("Consumer enemy," 1991), and in databases containing
information about stock prices (Bennin, 1980; Rosenberg and Houglet, 1974).

Errors in data are acknowledged as a significant problem by at least some information system
managers. In a survey of fifty Chief Information Officers of large organizations, half were found

to believe that the usefulness of their organization's data is limited because of data accuracy
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problems (Nayar, 1993). Knight (1992) reports the findings of a study in which two-thirds of
surveyed organizations acknowledged problems stemming from inaccurate or incomplete data.

Several studies have investigated the effect of data errors on the outputs of computer-based
models. Bansal, Kauffman, and Weitz (1993) studied the effect of data errors on predictions
made by neural network and linear regression models. Ballou and his colleagues have conducted
a stream of research on the effect of data errors on information system outputs (Ballou and Pazer,
1985; Ballou, Pazer, Belardo, and Klein, 1987; Ballou and Tayi, 1989; Ballou and Pazer, 1995;
Ballou, Wang, Pazer, and Tayi, in press). O'Leary (1993) investigated the effect of data errors in
the context of a rule-based artificial intelligence system. Each of these studies is discussed in
turn below.

Bansal, Kauffman, and Weitz (1993) compare the effect of errors in data on linear regression
and neural network models. Models to predict the prepayment rate of mortgage-backed security
portfolios were built using a training data set that was free of errors. Test data sets containing
data errors were then constructed to evaluate the sensitivity of these models to data errors. The
size of the data errors (5%, 10%, 15%, and 20%) and the fraction of the data set containing errors
(4%, 8%, and 12%) were manipulated. The linear regression and neural network forecasts were
evaluated using two metrics: (1) R? as a measure of predictive accuracy and (2) a payoff measure
designed to capture the value of an accurate forecast to a portfolio manager. Error size had a
statistically significant effect on predictive accuracy for both the linear regression and the neural
network models and on the measure of payoff for linear regression. The fraction of the data set
containing errors had a statistically significant effect on predictive accuracy and the payoff
measure for linear regression but had no effect on either metric for the neural network model.
They concluded that the neural network model is more robust than the linear regression model as
data quality decreases.

Ballou and Pazer (1985) present a model for analyzing the effect of errors in data on the
outputs of information systems. The objective of this model is to understand the way in which
data errors are magnified or dampened as data are manipulated in an information system. Ballou,
Pazer, Belardo, and Klein (1987) apply this model to an analysis of the impact of data errors in a
spreadsheet model. The problem of the selection of an appropriate forecasting model is

examined. Four variables are forecasted using ten different historical data sets containing errors.
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Across the four variables, the data errors were found to affect the selection of a forecasting model
for at least six and for as many as nine of the ten historical data sets.

Other studies in the research stream conducted by Ballou and his colleagues have examined
the allocation of resources to data quality improvement projects (Ballou and Tayi, 1989),
developed a framework for analyzing tradeoffs between the accuracy and timeliness dimensions
of data quality (Ballou and Pazer, 1995), and developed a framework applying total quality
management concepts to the measurement of data quality (Ballou, Wang, Pazer, and Tayi, in
press).

O'Leary (1993) presents a general methodology for analyzing the impact of data accuracy on
the performance of an artificial intelligence system designed to generate rules from data stored in
a database. The methodology is applicable to artificial intelligence systems that analyze data and
generate a set of rules of the form "if x then y." It is assumed that a subset of the generated rules
are added to the system's rule base on the basis of a measure of the goodness of each rule.
O'Leary shows that errors in data can affect the subset of rules that are added to the rule base and
that inappropriate rules may be retained while useful rules are discarded if data accuracy is

ignored.

2.2 Financial Applications of Neural Network Models

Neural networks are used by both academics and practitioners working in the area of
financial analysis. Much of the research in this area focuses on the predictive accuracy of neural
network models and on comparing the predictions of neural networks to those of more traditional
models such as linear regression. Chiang, Urban, and Baldridge (1996) developed neural
network, linear regression, and nonlinear regression models to forecast the net asset value of
mutual funds and found that neural network models perform better than both linear and nonlinear
regression models. Yoon, Swales, and Margavio (1993) compared the performance of back
propagation neural network models and discriminant analysis for predicting the performance of
stocks and found that neural network models made more accurate classifications than
discriminant analysis. Schoneburg (1990) developed neural network models to predict daily
stock prices for three German stocks. Jain and Nag (1995) applied a neural network to the
problem of pricing initial public offerings. Neural network based software to make predictions
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about financial instruments is also commercially available (e.g., Neural Applications
Corporation, 1996; Trendy Systems, 1997).

With the exception of the Bansal, Kauffman, and Weitz (1993) study, both academic and
commercial financial applications of neural network models assume that all data used to
construct the model and all data input to the model in production are accurate. The remaining
sections of this paper present the design and results of an investigation into the performance of

neural network models when this assumption is relaxed.

3. Back Propagation Neural Networks

Figure 1 shows a visual representation of a typical back propagation neural network. It has
three layers; an input layer which receives information from the environment, a hidden layer, and
an output layer which transmits a response back to the environment. Connections denote
whether information flows between processing elements occur. In this network inputs are
processed through a hidden layer to an output layer. The basic objective of back propagation is
to minimize the mean squared error between the actual output and the desired output as specified
in the training set.

Updating of a back propagation neural network consists of two phases, a forward phase and a
reverse phase. During the forward phase, input in the sense of paired values for A, and B is
presented, and propagated forward through the network to compute an output value for each
processing element (PE). This is accomplished by summing the results of multiplying the
weights associated with the connections to a particular PE and outputs associated with those
weights.

Use of a linear output or activation function for F,,, allows the output value to take on any
value. Sometimes it is desired that the output range be between 0 and 1. In this case, typically a
sigmoid or possibly a sine function is used.

The backward phase adjusts the weights associated with the nodes. Starting at the output
node where the error measure of desired output minus actual output is readily available, the error
measure is propagated back through the layers toward the input node. More detailed information
can be found in summary papers such as Masson and Yang (1990), Wang and Malakooti (1992),
and Zahedi (1991).
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Figure 1: Typical Back Propagation Neural Network
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4. Model Construction and Experimental Design

The application for study in this paper is the prediction of prices or net asset values (NAV) of
mutual funds. Mutual funds consist of diversified portfolios of stocks that are managed by

professionally trained individuals. They have become the major investment vehicle of choice.

Prices or net asset values (NAV) of mutual funds should reflect known economic

information. The relationships are often unclear and ill-defined, making the prediction of the

NAV very difficult and complex. Neural networks may provide a mechanism by which these

economic relationships can be exploited.

To start the construction of a model neural network for predicting the net asset value for a

mutual fund, 14 economic variables were identified as input. They are specified and defined in

Figure 2. A 10-year economic data set (1986-1995) was constructed from (Statistical Abstract,
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1996). In addition, end-of-year net asset values for 213 U.S. mutual funds were obtained from
(The Individual Investor’s Guide, 1997). The criteria for inclusion was having historical net
asset value figures back to 1987.

As the purpose of this study is the effect of data quality on neural network forecasting, it was
decided to limit the number of input variables to a more manageable amount. Stepwise linear

regression was conducted for the 213 mutual funds. A 5% significance level (the SPSS default)

Figure 2: Potential Independent Variables

Name Description

GDP Gross Domestic Product (in billions of dollars). Output attributable to all
labor and property supplied by United States residents.

CD* Consumption Demand (in billions of dollars). Personal consumption
expenditures.

ID Investment Demand (in billions of dollars). Investment spending by firms.
Excludes residential investments.

GD* Government Demand (in billions of dollars). U.S. government spending.
Includes consumption expenditures and gross investment.

NEX Net Exports (in billions of dollars). Net exports of goods and services.

CPI* Consumer Price Index. Measure of the average change is prices over time in
a fixed market basket of goods and services. 1982-84 = 100.

Mi1* Money, M1 (in billions of dollars). Includes currency in the hands of the
nonbank public, travelers checks, demand deposits, and other checkable
deposits.

M2 Money, M2 (in billions of dollars). Includes M1 plus money market funds,
savings deposits, and small time deposits.

UR Unemployment Rate. Percent of the labor force unemployed

TBR Treasury Bill Rate. Interest rate for 3-month Treasury bill.

FFR Federal Funds Rate.

CILEAD  Composite Index - Leading Indicators. 1987 = 100.
CICOIN  Composite Index - Coincident Indicators. 1987 = 100.
CILAG Composite Index - Lagging Indicators. 1987 = 100.

Note: Asterisk indicates selection for model development.
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was used to bring variables into the models. Four input variables were chosen based on the
number of times each had been selected in the regression step. These variables are identified by
an asterisk in Figure 2. In addition, it was decided to limit the number of mutual funds to 10 per
fund type. Fund type definitions are per (The Individual Investor’s Guide, 1997). The randomly
chosen 40 funds are indicated in Figure 3.

Figure 3: Randomly Chosen Mutual Funds

Aggressive Growth (out of 64 possible) Growth (out of 80 possible)

Fairmont Fidelity Capital Appreciation

Fidelity Sel Air Transportation Fiduciary Capital Growth

Fidelity Sel Automotive Founders Growth

Fidelity Sel Brokerage & Investment Janus Fund

Fidelity Sel Computers Mathers

Fidelity Sel Leisure Meridian

Fidelity Sel Software & Computer Schwartz Value

INVESCO Dynamics Scudder Equity Trust: Capital Growth
Kaufmann Sound Shore

USAA Aggressive Growth Vanguard/Morgan Growth

Balanced (out of 24 possible)

Growth & Income (out of 45 possible)

Dodge & Cox Balanced AARP Growth & Income

Fidelity Puritan Berger Growth & Income
Founders Balanced Dreyfus Third Century
Greenspring Fidelity Sel Utilities Growth
INVESCO Industrial Income IAI Growth & Income

Northeast Investors Trust INVESCO Value: Value Equity
SAFECO Income SAFECO Equity

Strong Asset Allocation Stratton Monthly Dividend Shares
USAA Income Strong Total Return

Value Line Income

T. Rowe Price Growth & Income
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For construction of the neural network models, the first nine years of data (the training set)
are used. Data from the tenth year (the testing set) are used to develop the NAV forecast for a
specific mutual fund.

Forty neural networks were constructed (one for each mutual fund). Various additional
parameter value decisions were made by a combination of trial and error and experience. For
example, it was decided to have one hidden layer with six nodes and one output node for NAV
prediction for a particular mutual fund for 1996. This is in addition to the four input
nodes which were decided earlier. Figure 4 gives a simplified schematic representation of the

neural network.

Figure 4: Simplified Neural Network for NAV Example

NAV

Output Layer N

w (L C 5
Layer \
SOSTES S X
PSS
Input Layer Q ' ‘
CD GD CPI M1

Also, a learning rate of 0.10, a momentum rate of 0.10, and 0.30 for initial weights were

chosen. An activation function of hyperbolic tangent for the hidden layer and linear for the
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output node were chosen based on software advice. Stopping rules were set to allow the neural
network enough time to make significant adjustments. The maximum number of learning epochs
was set to 10,000. A learning epoch indicates the network going through the 9 years of training
data once. Finally, better solutions are indicated by a decrease in the minimum average error.
Decreases occur frequently early in training. It was decided that the procedure should be stopped
if 1,000 epochs occurred without a change in minimum average error. All runs were conducted
using NeuroShell 2 software (NeuroShell, 1996).

A neural network was constructed for each of the 40 mutual funds using the 9 oldest years of
the data for training. The 1995 testing data was then used to predict a NAV value for each of the
40 mutual funds for the end-of-year 1996. Actual end-of-year 1996 NAV values and predicted
end-of-year NAV values by fund type were compared using both R? and mean absolute percent
error (MAPE) measures of accuracy. This formed the base case.

The experimental design included three factors; (1) fraction-error or percent of the four
variables in the testing set that would be changed with levels of 25 percent, 50 percent, 75
percent, and 100 percent, (2) amount-error or the percent amount by which the variables
identified in the fraction-error factor would be changed with levels of plus or minus 5 percent,
and plus or minus 10 percent, and (3) fund type with levels of aggressive growth, balanced,
growth, growth & income.

As there are four variables used as input, the fraction-error levels of 25 percent, 50 percent,
75 percent, and 100 percent indicate whether 1, 2, 3, or 4 variable values would be altered to
simulate an inaccuracy. The two levels of amount-error, 5 percent and 10 percent, were chosen
as being representative of many situations. Random numbers were utilized to determine which
variables were to be altered and by how much for a particular combination of levels. Amount-
error was equally likely to be positive as well as negative.

In order to reduce variability, a second stream of random numbers was constructed along
with the first. This second stream contained antithetic random numbers which are simply the
difference found by subtracting the random number in the first stream from the number one. It
was decided that four estimations would be appropriate for each amount-error fraction-error
combination. Therefore, a total of 8 runs (four estimations with two random number streams)

was accomplished for each combination.
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5. Results Discussion

Predictive accuracy results, using the simulated inaccuracies for amount-error and fraction-
error, in terms of R? and MAPE for the NAV forecasts for 1996 are given in Table 1 and Table 2.
Results (R? in Table 1 and MAPE in Table 2) reflect the use of the appropriately perturbed
portion of the test data except for the 0% fraction-error and 0% amount-error cell. This cell
reflects results. using the unperturbed test data. All other cells reflect average values for four
estimations; each estimation utilized an independently drawn random number stream for one run
and the antithetic stream for a second run. Therefore, each cell reflects the average of eight runs,

four independent pairs each.

5.1 ANOVA Analysis

Two three-factor analysis of variance (ANOVA) tests were conducted, using the data in
Tables 1 and 2. One ANOVA run was performed for each performance measure (R’ and
MAPE). For each run, the factors are fraction-error (25 percent, 50 percent, 75 percent, and 100
percent), amount-error (plus or minus 5 percent, and plus or minus 10 percent), and fund type
(aggressive growth, balanced, growth, growth & income).

Tables 3 and 4 gives the calculated F values in each instance; critical values are given in the
left-hand column; Table 3 for R* and Table 4 for MAPE. Significant results are indicated with
an asterisk. Significant results indicate those factors which have a significant effect on the
predictive measure. For example, Table 3 results indicate that as the amount-error increases
from 5 percent to 10 percent, the decrease in R? is significant. In other words, the mean value for
R? is not equal for both values of amount-error.

When there are more than two factors, ANOVA results do not indicate where the significant
differences occur. For example, while fraction-error is a significant factor for both R? and
MAPE, this difference may come as fraction-error changed from 25 percent to 50 percent, 50 to
75 percent, or 75 to 100 percent. It could also have come from a larger jump, such as 25 percent
to 75 percent or 25 percent to 100 percent. Independent Samples T-Tests were performed in

order to determine exactly where significant differences occurred.
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Table 1: Variations in Predictive Accuracy (R*) When Accuracy of Test Data Varies

Amount Fraction Error
Error Fund Type 0% 25% 50% 75%  100%

0% Aggressive Growth 91.0
Balanced 98.9
Growth 76.1
Growth & Income 88.7

5% Aggressive Growth 91.0 91.7 90.7 89.8

Balanced 98.8 98.9 98.8 98.8

Growth 77.4 76.2 77.1 75.5

Growth & Income 88.7 89.8 88.7 89.0

10% Aggressive Growth 90.7 89.9 89.1 83.7

Balanced 98.8 98.7 98.0 97.3

Growth 76.8 68.9 67.3 60.9

Growth & Income 88.7 86.6 84.7 75.5

Note: Data used to obtain these results were the test data. The 0% fraction error and 0% amount error cell reflects
the accuracy of the unmodified test data used in conjunction with the unmodified neural network. All other cells
reflect average accuracy results for 4 simulated estimations involving appropriately simulated data inaccuracies.
Each estimation is the result of two runs, one using the drawn random numbers, the other the antithetic random
number. Therefore, each cell represents the average of 8 runs.

238




Table 2: Variations in Predictive Accuracy (MAPE) When Accuracy of Test Data Varies

Amount Fraction Error
Error Fund Type 0% 25% 50% 75%  100%
0% Aggressive Growth 9.95%
Balanced 7.70%
Growth 10.59%
Growth & Income 9.73%

5% Aggressive Growth 10.58% 10.66% 10.87% 12.27%
Balanced 7.66% 7.81% 8.61% 9.62%
Growth 1031% 1094% 11.21% 12.10%
Growth & Income 9.70% 9.75% 10.31% 11.39%

10% Aggressive Growth 11.21% 12.60% 13.15% 15.72%
Balanced 823% 1121% 12.77% 14.75%
Growth 10.55% 1543% 15.58% 17.51%
Growth & Income 11.45% 13.77% 14.76% 17.89%

Note: Data used to obtain these results were the test data. The 0% fraction error and 0% amount error cell reflects
the accuracy of the unmodified test data used in conjunction with the unmodified neural network. All other cells
reflect average accuracy results for 4 simulated estimations involving appropriately simulated data inaccuracies.
Each estimation is the result of two runs, one using the drawn random numbers, the other the antithetic random
number. Therefore, each cell represents the average of 8 runs.
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Table 3: Significance of Varying Amount Error, Fraction Error, and Fund Type on
Predictive Performance (R?) - ANOVA Results

Factor/significance criterion Predictive Accuracy
Fraction error 12.190*
F(0.01;3;96) = 3.992

Amount error 43.551*
F(0.01;1;96) = 6.906

Fund type 293.371*
F(0.01;3:96) = 3.992

Fraction error-amount error interaction 8.275%
F(0.01;3;96) = 3.992

Fraction error-fund type interaction 1.589
F(0.01;9;96) =2.598

Amount error-fund type interaction 6.803*

F(0.01;3;96) = 3.992

Fraction error-amount error-fund type interaction 1.134
F(0.01;9;96) = 2.598

Significant results are marked with an asterisk.
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Table 4: Significance of Varying Amount Error, Fraction Error, and Fund Type on
Predictive Performance (MAPE) - ANOVA Results

Factor/significance criterion Predictive Accuracy
Fraction error 7.028*
F(0.01;3;96) =3.992

Amount error 28.671*
F(0.01;1;96) = 6.906

Fund type 4.247*
F(0.01;3:96) =3.992

Fraction error-amount error interaction 2.150
F(0.01;3;96) = 3.992

Fraction error-fund type interaction 0.107
F(0.01;9;96) =2.598

Amount error-fund type interaction 0.492

F(0.01;3;96) = 3.992

Fraction error-amount error-fund type interaction 0.052
F(0.01;9;96) =2.598

Significant results are marked with an asterisk.

From the ANOVA, and Independent Samples tests, the following conclusions are drawn:

Performance Measure: R’
1. No significant difference among and between the various levels of fraction-error.
2. No significant difference among and between the various levels of amount-error.
3. Balanced fund had the significantly highest R*.
4

. Aggressive growth and growth & income were indistinguishable from each other and had

the next significantly highest R.
5. Growth had the significantly lowest R.

Performance Measure: MAPE
1. The 100% fraction-error had significantly higher MAPE than the 25% fraction-error.
The 75% fraction-error had significantly higher MAPE than the 25% fraction-error.

The 5% and 10% amount-error MAPE means were significantly different.
Growth fund had significantly higher MAPE than aggressive growth fund.

SANRANE ol N

& income.

The 50%, 75% and 100% fraction-error MAPE means were not significantly different.

MAPE means were not significantly different for aggressive growth, balanced and growth

7. MAPE means were not significantly different for balanced, growth & income and growth.
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6. Conclusions

This paper contributes to the literature on data quality by demonstrating that the predictive
accuracy of neural networks is affected by two factors: fraction-error and amount-error. The
findings of this study have implications for practitioners working in a variety of settings
characterized by imperfect data. They suggest that an understanding of the error rate and the
magnitude of errors in a dataset should be important considerations for users of neural network
models. The fact that our experimental manipulations of the amount-error factor were limited to
5 and 10 percent is of particular practical importance. Data errors larger than 10 percent have
been documented in practice, and our results suggest that larger errors would have a more
detrimental effect.

The results presented in the prior section assume that data used to train the network are free
of errors. One area for future research is the investigation of the effect of errors in data used to
train neural networks. We are currently investigating this problem using the task of mutual fund
net asset value prediction described in section 4. A three factor experiment is being conducted in
which fund type, fraction of the training data containing errors (5% and 10%), and amount of the
data errors (5% and 10%) are varied for the training set.

While we plan to perform 8 runs in each cell of the experimental design currently only one
run per cell has been completed. Results from the completed runs are presented in Table 5 and
Table 6. The number of completed runs in each cell of the experimental design is too small to
perform a statistical analysis of the effect of fraction error, amount error, and fund type on
predictive accuracy (R? and MAPE). However, we note that for 15 of the 16 runs completed, R?
is higher for the runs with errors in the training data than for the base case runs without data
errors. MAPE is higher for all of the runs with 5 percent fraction error than for the base case
runs. For 10 percent fraction error, two runs have higher MAPE than the base case, and six runs
have lower MAPE than the base case.

The scope of this study is limited to the back propagation neural network architecture with
hyperbolic tangent and linear activation functions. Future research could consider other neural
network architectures such as probabilistic neural networks and general regression neural

networks as well as other activation functions such as the logistic activation function.
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Table 5: Variations in Predictive Accuracy (R’) When Accuracy of Training Data Varies

Amount Fraction Error
Error Fund Type 0% 5% 10%

0% Aggressive Growth 91.0
Balanced 98.9
Growth 76.1
Growth & Income 88.7

5% Aggressive Growth 95.9 97.7

Balanced 99.3 99.4

Growth 89.3 92.8

Growth & Income 96.3 97.9

10% Aggressive Growth 95.2 97.1

Balanced 99.6 98.6

Growth 94.3 96.4

Growth & Income 95.2 95.3

Note: Data used to obtain these results were the training data. The 0% fraction error and 0% amount error cell
reflects the accuracy of the unmodified test data used in conjunction with the unmodified neural network. All other
cells reflect accuracy results for 1 simulated run involving appropriately simulated data inaccuracies.
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Table 6: Variations in Predictive Accuracy (MAPE) When Accuracy of Training Data

Varies
Amount Fraction Error
Error Fund Type 0% 5% 10%
0% Aggressive Growth 9.95%
Balanced 7.70%
Growth 10.59%
Growth & Income 9.73%

5% Aggressive Growth 18.94% 9.30%
Balanced 13.08% 7.56%
Growth 10.82% 6.55%
Growth & Income 12.05% 7.25%

10% Aggressive Growth 16.77% 11.62%
Balanced 10.68% 8.77%
Growth 10.70% 5.49%
Growth & Income 15.62% 7.59%

Note: Data used to obtain these results were the training data. The 0% fraction error and 0% amount error cell
reflects the accuracy of the unmodified test data used in conjunction with the unmodified neural network. All other
cells reflect accuracy results for 1 simulated run involving appropriately simulated data inaccuracies.
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