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Attempts to improve database accuracy need to address both the current
accuracy of data holdings and the accuracy of inputs and updates. A
mathematical model is proposed which can be used to set realistic goals for data
quality improvement projects. It describes how the accuracy of a data view in a
database is affected by the accuracies of new, or changed, instances of the data
view. In particular the model can be used to calculate the time-lag between the

initiation of the improvement and its ultimate effect.

1. Introduction

Those responsible for data quality improvement need to be aware of the dynamic nature of
the databases they deal with. Not only do database sizes change, but also the accuracy of the
data they hold will change. Accuracy can even vary when the business processes which feed the
data are quite stable. Thus symptoms of decreasing accuracy may not be due to a deterioration in

quality control: they may be an intrinsic aspect of the dynamics of the database itself.

Attempts to improve accuracy need to address both the current accuracy of data holdings
(data ‘stocks’) and the accuracy of inputs and updates (data ‘flows’). Focussing on one at the

expense of the other can be a waste of time and effort.

The model described below can be used to set realistic goals for data quality improvement
projects. The results of the model can be understood without an understanding of the underlying
mathematics. What the model offers over and above intuition is 2 means for making reasonable

estimates of the size and scope of the interaction between stocks and flows.

A simpler version of the model was originally developed as part of a consultancy. The need

for it arose after an sample survey had been taken to establish the prevailing levels of accuracy of
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the company’s major databases. The survey results led to an appraisal of a number of existing

and proposed initiatives to improve data quality.

2. A Working Definition of Data Accuracy

Data is a symbolic representation of the external world. A data view is of poor quality in as

much as it does not adequately represent its intended subject, according to an intended use.

It is at least theoretically possible to test whether any given instance of data is correct by
locating and identifying its subject and then comparing the two. A variety of factors can be built
into whether or not the representation is deemed to be satisfactory. These include combinations
of exact and partial matches between ‘atomic’ attributes and whether the attribute values agree

within a specified tolerance (including timeliness). Its all up to the user of the data.

Data accuracy can be defined as a measure of data quality by counting the number of

correct instances and computing the proportion of correct instances of the view, that is,

accuracy of an data view
_ number of correct instances of the data view (1.)
the total number of instances of the data view

According to this definition, an accuracy is a number between 0 and 1. It represents the
probability that an instance of the data view, drawn at random from the database, will be correct.
Different accuracies will be obtained for the same data view depending on the factors and

Interpretation rules chosen.

The following analysis makes no assumptions about how the accuracy measure is

constructed as long as it is expressed as a proportion as shown in equation (1.)

3. Database Stocks and Flows

Any database is initially empty. It is filled by a series of inserts, possibly through a bulk
load from other sources. Most databases are dynamic because they are subject to a continual

stream of interleaved inserts, updates and deletions.
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The database stock is the set of instances in the database at any chosen instant. A database
flow is the changes which occur to the stock: either new instances which are inserted or updates
and deletions which are applied to the stock (Figure 1). (Redmond 1992) refers to stocks as

‘lakes’ and flows as ‘streams’.

Stocks and flows are time-dependent notions. An update or insert is a flow at one instant
which becomes a stock instance in the next. On the other hand, a stock instance becomes a flow

as it is deleted.

stocks
N flow

Figure 1: The concept of stocks and flows.

The accuracy of stock must be the result of the accuracies of the flows which generated it.
Updates, inserts and deletions can occur at different rates and updates and inserts may have
different accuracies. In order to quantify the net effect on the average accuracy of the stocks of

these mixed effects it is necessary to analyse the flows process in more detail.

Figure 2. illustrates the interaction between inserts, updates and deletions over a period.
The sequence shown here is chosen to best show how the three types of flow interact. In practice

the different types of flow will occur simultaneously.

For a database of any size, and for a time-scale in years, the flows may be considered to be

continuous. This situation can be modelled in terms of a differential equation.
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1. Start with the current stock. 2. Add inserts.
inserts
stock
stock
3. Apply updates to both the 4. Apply deletions to the
original stock and the inserts. modified stock and inserts.
inserts
stock

Figure 2: Interaction between the types of flow.

4. The Model

4.1 Database Size

In order to calculate accuracy, according to equation (1.), it is necessary to start with a
picture of how the size of the database changes over time. Database entities typically represent
some limited set of instances in the real world, a set of customers, a set of assets or a set of
transactions. The logistic curve is often used to model population growth or economic growth
(Montroll, 1974). Figure 3 shows a picture of logistic database growth. In this case the data is
initialised on day 1 with 5,000 instances. At first the growth is roughly proportional to the
current size of the database (that is, exponential) and then it slows down as the market ceiling of

1 million instances is approached, after 15 years.

Equation 2. shows an expression for logistic database growth. This is a slightly modified

form of the standard logistic with an extra term ¢, to account for deletion.
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A
n=m where A=¢,N—¢D,B=Z—¢, and (2.)

¢t = Time in years
N = The size of the population intended to be captured in the database in a specific entity.
n, = The initial size of the database, at 7 = 0.
¢, = A growth constant such that ¢ M represents the probability of capturing a new instance
from the remaining population of size N — n.
&, = The proportion of the data deleted each year.

The effect of deletions means that the size of the database approaches a limit of N — % as
7

¢ becomes large. In this case the limit is 998,571.
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Figure 3: Logistic growth in database size for:

N =1,000,000;n, = 5,000;¢, = 7 x 10‘7;¢D =001
See 9, Appendix: Sketch of the Model Derivation, for more detail.

The logistic may be inappropriate for some applications. The author is currently dealing

with a forecasting database. The database contains time series which are used for decision
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support. The forecasts relate to a fixed population of items which is unlikely to increase
significantly but there are regular batches of new forecasts. The growth in the data is roughly
linear with no deletion, that is n = p,t + n,where p, is the constant proportion of inserts per
annum. Similar models to the one developed below 3. can be established for different growth

patterns using the same techniques (see equation (7.) section 9.4).

4.2 Database Accuracy
The analysis in section 3 can be used to set up a differential equation for the accuracy of the
database in terms of a set of parameters, including size. The equation can be solved (partially) to

produce the expression:

(aU —a])ptj ]ne(pu-wﬁo)rdt + ..(_fz_()____a’_)ﬁ (3.)

a=a;+ = o ; e Po 9o

where

a = The accuracy of the database at time ¢

a, = The initial accuracy of the database (at = 0).

a, = The accuracy of the data being inserted into the database.
a,, = The accuracy of the data being updated.

Py = The proportion of data updated per annum.

These last 3 parameters are assumed to be constants. The derivation of this expression is
sketched in Appendix, 9. A more detailed derivation can be supplied on request. The integral in
equation (3.) cannot be evaluated analytically but it can be computed using power series or by
standard numerical methods. The graphs displayed below were based on a numerical

approximation and were generated in a spreadsheet. The spreadsheet is also available on request.

The model in equation (3.) shows that:

1. The contribution of the initial accuracy a, attenuates over the life of the database as the new
entrants begin to swamp the initial instances, i.e.

N,

=TT approaches 0 as 7 increases.
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2. There is a dynamic tension between the insert and the update accuracies such that a,

dominates during the early, fast growth of the database, but,

3. the accuracy approaches a weighted average of the insert accuracy and the update accuracy

t

as the database becomes older, i.e. — Py __ Ine(””%)’dt

aypy +a;8,
n e(PU+¢D)f J

Dy+ép

Dy
Py + &

approaches as ¢ increases.

The model is based on a range of assumptions including:

e All variables are non-random. In practice the values of most of the variables described in the
mode] will be subject to random fluctuations. We are interested in the broad relationship

between stocks and flows and, at this level, such randomness can be ignored.

¢ The number of updates and deletions, in any period, is directly proportional to the size of the

database.

 The rate of updates and deletions to records is independent of how long the records have been

held in the database.

e Inserts, updates and deletions take place continuously over the year.

5. Patterns of Accuracy

The model shows that the accuracy varies over time if the initial, insert and update
accuracies are different from each other. For example Figure 4 shows how it will change as the

database size changes where a, >a,>a,.

It is reasonable to expect that these accuracies will differ because they are often generated

via different processes.

In this example the organisation will experience a much higher level of complaints, foul-
ups and re-work from poor data quality from year 8 onwards without any business practices in

relation to the data having changed.
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Figure 4: Change in accuracy relative to change in size where,

a, =092,a,=09,a, =089,p, =01

Figure 5 shows the above curve (A) together with 5 other possibilities, derived by
permuting the same numbers (0.89, 0.9, 0.92) amongst the 3 variables (a,,a,,ay ). Its clear that
the history of the database accuracy is very sensitive to these parameters and that it is very

difficult to determine the cause of a trend in accuracy by observing the database in isolation.

0.92 »

0.915 1

091 1

0.905 1

accuracy
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time in years

Figure 5: Six possible patterns of accuracy
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A B C D E F

a, 0.9 0.9 0.92 0.92 0.89 0.89

a, 0.92 0.89 0.9 0.89 0.9 0.92

a, 0.89 0.92 0.89 0.9 0.92 0.9
Key for Figure 5

6. The Results of Improvement Efforts
A common approach taken to data quality improvement is to apply data scrubbing or data
alignment techniques to increase the stocks accuracy. If such a clean up is attempted without a
concurrent attempt to improve the flows accuracy then the effect will die away fairly quickly as
illustrated by the model in Figure 6. The dotted curve shows a sudden increase in stocks
accuracy from 0.895 to 0.92 in year 5. This was applied in a situation corresponding to pattern
(B) in Figure 5. The good work has largely been dissipated after 3 years because the poorer flow

accuracy re-pollutes the stock.

Conversely the dashed curve in Figure 6 corresponds to a boost in insert accuracy to 0.92 in
year 5. Although it takes about the same period of 3 years for the most of the effect to appear,
this improvement is permanent. In this scenario the purer flow thins out the pollution in the
stock and then keeps the accuracy high because the stocks are continually being replenished by
new, cleaner data. The stocks accuracy cannot exceed 0.92 however because this is also the

update accuracy.

Similar patterns will be observed for the other 5 cases in Figure 5. That is, a stimulus to
stocks accuracy alone will decay back to the underlying curve after a few years but a jump in the

flows accuracy will be maintained although it will take a comparable time to reach its full effect.

There are also differences in the effect of insert and update accuracies. In section 4.2 it was

shown that database accuracy approaches a limit of ngu__‘:;i@_ Figure 7 depicts how the
Py +9p

different patterns in Figure 5 yield different limits in the long term (50 years). If, for example,

Py > ¢, then every percentage improvement in a,, will have a bigger effect on the overall

accuracy then the same improvement in q, .
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Figure 6: Responses to accuracy improvement.
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Figure 7: Patterns of accuracy in the long term
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The model can be employed in a variety of other ways to evaluate the impact improvement
Initiatives. For example it could be used to examine the effect on accuracy of a bulk removal

(archive or deletion) of old data from the database.

7. Fitting the Model

In order to fit the model in equation (3.) to a real case it is necessary to verify the
assumptions set out in section 4.2 (including logistic growth) and to estimate values for the
parameters. Estimates can be made using market information and measuring the database during

a chosen year ¢ as follows:

Size of the market M
Ultimate market share S
Number of instances of the data view at the start of the year. n
Number of instances inserted during the year. I
Number of correct instances inserted during the year. [t
Number of instances updated during the year. U
Number of correct updated inserted during the year. cy
Number of instances deleted during the year D

ThenN =M xS, ¢,=D/n, ay, =¢,/U, a,=c,/I, p, =U/n. Values for n,and a,can
be taken from the database history, if it is available. ¢, can be estimated by inverting equation

(2.), @, = A/n— Be™* , where t is the chosen year. The number of correct instances of various

types can be estimated by sampling.

Ideally these parameters should be measured over several time periods to check that they
are relatively constant and hence that the model assumptions are true. However most
organisations do not measure the accuracy of their data at all (either stocks or flows) let alone
keep a history of them. It is usually difficult to obtain a history of database size or flow rates. If
there is insufficient information to calculate the parameiers then educated guesses can at least

provide some assistance in planning for data quality improvement.
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8. Conclusion

The dynamic nature of databases makes data quality improvement difficult to manage.
Since database accuracy may not be constant even under stable input conditions it is hard to
determine whether a deterioration or an improvement in accuracy is intrinsic or due to external

factors.

As with any form of quality control, measurement is crucial. In the data quality arena the
measurement of a limited set of parameters associated with the data can yield a picture of what is
happening and inform how best to improve the situation. In particular improving data stocks
accuracy alone is likely to be ineffective. Ideally stocks and flows improvement should be
tackled simultaneously but if there are limited resources then it is generally better to concentrate

on flows improvement first.

9. Appendix: Sketch of the Model Derivation

9.1 Size

The standard logistic is derived fromn’ = g,n(N —n) . We have modified this to allow for

deletions by subtracting the term g,n:
n' =¢n(N -n)-gn _ (4.)

This can be solved along the lines set out in (Montroll, 1974) leading to equation (2.) in

section 4.1, Database Size.
9.2 Accuracy

An equation for the accuracy can be developed by considering the number of correct

instances, c(t) (see Figure 2):
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c(t+df)—c(t)= + [number of correct mserts a,6n(N —n)ds

- | number of correct instances in the set of updated  ap,nds
instances, before it was updated

+ | number of correct instances in the set of a, pyndt
updates, after it was updated

- | number of correct instances in the set deleted agyndt

= a,¢n(N —n)dt - c(t) p,dt + a, p,ndt — c(t)ydt

Thus
¢'=—(py +ép)c+(a;6,(N-n)+ayp,)n (5.
c ’ 14 14 nl
The accuracy is defined to be @ = —, so that a’ =£—CL2=——a——
n n n n n

Substituting in this from equations (4.) and (5.) yields a differential equation in a:

a'+(py +¢,(N-n))a=a,4,(N—-n)+a,p, 6.

This 1s a first order Differential Equation which can be solved by multiplying through by an
integrating factor (Chaundry, 1969):

! )ne(Pu+¢D)’

S =exp f(pu +¢,(N—n))dt= 4+ 8 y

0

transforming (6.) into:

Ot ™ O~

ane' Pt _ an, ne(pu+¢o)r(a1¢] (N-n)+a, Dy )dt

glPedo)t (a 16,(n' — gn) + a, pun)dt
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t

L4
_[n'e“’” *#2)dt can be expressed in terms of Ine“"””"’ )*dt using integration by parts. This
0 0 )

allows the last line above to be transformed into equation (3.)

9.3 Power Series

t
The integral J'ne“’" *#2)' gt can be expanded to a power series as:
0

w A © ¢ S l
ne(PU +¢D)’dt = (__ __1_) e(Pu+¢n+A(S+1))W -1
! Bz B (pU+¢D+A(S+1))[ ]

5=0

1. (B
for w< —ln(—J ,and

4 \¢
’ 4&( BY 1
ne'Pv+oodidgy — = (_ _) SR V70 ) L elPutdp= AW
J I; ¢1 (PU+¢D"AS)[ ]
for w> ! ln( BJ
Tr wW>— -
4 \¢

9.4 Generalisation

As indicated at the end of section 4.1, the logistic may not always be an appropriate model

for database growth. In general the database size will be of the form:
n' = g(t) = gpn

for some function g(¢). In this case the corresponding version of equation (6.) will be:

a’ +(pu +§)a =a,-‘g+aupu
n n (7.)
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A more general formulation can be made by allowing for a mix of muitiple flows with
differing accuracies. The mixing of flows, although not the net effect on stocks, is addressed in

(Ballou, 1985).
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