A Homogeneous Framework to Measure Data Quality

Moénica Bobrowski Martina Marré Daniel Yankelevich
Departamento de Computaciéon - FCEyN
Universidad de Buenos Aires
Pabellén I - Ciudad Universitaria
(1428) Buenos Aires, Argentina
++ 54 14576 3359
{monicab, martina, dany }@dc.uba.ar

ABSTRACT

Thirty years ago, software was not considered a concrete value. Today, software is (even
Sformally) an asset for any organization. Data is slowly following the same path. The
information owned by an organization is an important part of its assets. Information can be
used as a competitive advantage. However, the software engineering community has long
ignored data. Usually, methods and techniques apply to software (including data schema),
but the data itself has often been regarded as external. Validation and verification
techniques usually assume that data is provided by an external agent, and concentrate only
on software. The first step to define methods and techniques to improve data quality is to
measure the value of information. It is impossible to make empirical evaluations of data
quality if we do not agree on what (and how) should be measured. In this work, we apply
traditional software metrics techniques to measure data quality, following the Goal-
Question-Metric (GOM) methodology. The outcome is a suitable set of metrics that
establishes a starting point for a systematic analysis of data quality. Moreover, we perform
an experiment to validate the idea of using standard software engineering tools to attack
data quality issues.

Keywords
Data Quality, GQM, Data Metrics

1 INTRODUCTION

Thirty years ago, software was not considered a concrete value in an organization. Everyone agreed on
the importance of software, on its virtual value, but it was not regarded as a good, as a possession. In
those days, the value of software was associated with its cost. Nowadays, software is part of the balance
of an organization, it contributes to its value, and we calculate the return of investment (ROI) of virtually
every project.

Data is slowly following the same path. Thus, managers know that having the right information at the
right time may lead to great benefits. Data can be used as a competitive advantage. This data is usually
stored in large databases, and managed via software applications. However, it is not enough to have good
applications: an organization needs good data to achieve its goals.

The quality of the data owned by an organization crucially affects how useful this data is. Information of
poor quality will typically be used little, or may lead to incorrect or harmful decisions. “Decisions are no
better than the data on which they are based” [12]. But, what does data quality mean? How could the
quality of the data in an organization be measured, in order to decide if data can be trusted?

Many of the problems that result from using bad data are well known to software engineers. However, the
software engineering community has long ignored data quality issues. Usually, methods and techniques
apply to software (including data schemas), but the data itself has often been considered an external
problem. Quality techniques for validation and verification usually assume that an external agent provides
data, and concentrate only on the software proper.

Our claim is that software engineering should encompass data quality issues, to prevent, detect, and solve
system problems resulting from data of poor quality. Some of these problems originate in human errors,
while others can be addressed using standard software techniques. We propose this “software engineering

115

view” in [4]. Our position is that many data quality problems derive from bad software engineering
practices. Hence the software engineering community should deal with these problems.

Recently, researchers have been studying data quality problems from the perspective of the data
generation processes [18, 14, 15]. They have identified problems in the data, and tried to associate them
with problems in the process that generated this data. The underlying idea is that improving the data
generation and manipulation’ process may lead to an improvement in data, likewise the improvement of
the software development process leads to an improvement of the software product.

Redman [11] gives an introduction to data quality (DQ) issues. He highlights the importance of
understanding data quality requirements from the beginning of the software process, but from a
management perspective. He separates data issues from software issues. He deals mainly with data, not
with applications. Although data is independent from applications at a certain level, we cannot ignore that
data is generated, used, and maintained by applications. As software engineers, we must have in mind
data issues when designing and implementing our software systems. Moreover, the intended use of the
data helps us understand systems too. We believe that certain attributes are independent from the intended
use of the data, but others are not.

Redman uses the data tracking technique (well known by statistical practitioners) to measure data quality.
He does not propose a way to generalize metrics, and abstract from particular problems (in fact, Redman
really does not need this generalization for his purposes). Our goal is to present a general framework
where we could define metrics for a large variety of applications.

Other approaches [14, 15] have a similar management perspective. They use ad-hoc metrics for specific
database applications (medical, customer applications, etc.), and rely on user satisfaction as a measure of

quality.

Huang et al. [8], present a tool that combine integrity constraints in relational databases with the TDQM
cycle to measure the quality of data. This otherwise interesting idea has limitations and lacks a formal
justification of its measures. We want to complement those metrics with more complete and less
subjective measures, when possible, following a top-down approach based on the dimensions of interest.

The only concern for computer engineers regarding data quality has been the extraction of data for data
warehouses. In the context of Data Warehousing, a European project investigated quality and in particular
the requirements on data needed to implement a data warehouse [9]. Also reference [2] presents a model
to support quality enhancement in data warehouse environments.

A classical approach to measure information is given by information theory [13]. Information is
associated with the probability of a message. Hence, following this approach, the book that gives the most
information in a fixed length is a random book — since it cannot be compacted, it has no redundancy. In
contrast, such a book would be useless for our purposes, giving no information at all. This suggests that
our approach is based on the effect that information causes in something else. Formally, we are giving a
nonstandard semantics to information — a pragmatic semantics, based on usability — to measure the
amount of information of a content. This pragmatic view is the basis of our approach: the value of
information depends on how this information will be used.

We measure information quality with metrics defined using traditional software engineering techniques.
Metrics have been deeply studied in software engineering [6]. In particular, we base our work on the
GQM methodology [3]. We believe this top-down approach to metrics definition may lead to a useful set
of metrics, based on dimensions that may be part of the data quality notion. Our work is related to the
internal view of the information system perspective pointed out in [8] (oriented toward system design and
data production), but it has some aspects of the external view too (use and effect). However, we always
work with data quality issues from a software engineering perspective, taking into account the issues
software engineers may help to improve. Our goal is not to have perfect quality, but to have better quality.
Moreover, we want to give a systematic way of deriving measures for quality, not only to give measures.

We cannot measure data and ignore how it is organized. Certain quality characteristics are related to the
organization of data, i.e., to the data model, and not to the data itself. The data model might affect some
data quality attributes, since it defines the way data is accessed and maintained. We want to identify and
measure those attributes too, and complement measures of data with information on how it is organized.

Our main scope is to apply these measurement techniques to data in digital format. This data is usually
organized in databases, at least at a logical level. Thus, we concentrate on models for databases [16, 1].
Our goal is to implement metrics at least in the case of the relational model, but the measures defined are
general enough to be used in other cases.

116

In this paper, we present a framework for defining and using data quality metrics. We introduce a set of
metrics that constitute a promising starting point for a systematic analysis of data quality. Moreover, we
perform an experiment to validate the idea of using standard software engineering tools to attack data
quality issues.

In Section 2 we discuss what data quality means. In Section 3 we present GQM. In Section 4, we outline
some issues in the application of the' GQM methodology to define data quality metrics. Also, we present
some of the metrics so defined. This will be done using a simple case study. We will also include the
results of this experiment.

2 What is Data Quality?

It is difficult to give a universal definition of what quality means. When we talk about quality we do not
always refer to the same concept. The word quality by itself does not have a unique connotation. We have
to make assumptions on which aspects apply to a particular situation. In the case of data quality, we may
want to take into account only specific data attributes with some specific relevance, depending on the
particular context we are analyzing. In our view, the quality of data in the context of software systems is
related to the benefits that the data might give to an organization.

As mentioned above, the quality of data depends on several aspects. Therefore, in order to obtain an
accurate measure of the quality of data, one have to choose which attributes to consider, and how much
each one contributes to the quality as a whole. In what follows, we present several attributes we think
have to be measured in order to determine the quality of our data. These attributes, or dimensions, have
been taken from [18, 14] following the point of view of the value of the data, i.e., our pragmatic view of
data quality.

We now present an informal definition for each of the attributes considered in this paper. These
definitions will serve as the basis to define our new metrics (a more extensive list is given in [14]).

Completeness Every fact of the real world is represented. It is possible to consider two different
aspects of completeness: first, certain values may not be present at the time; second,
certain attributes cannot be stored.

Relevance Every piece of information stored is important in order to get a representation of the
real world.

Reliability The data stored is trust worthy, i.e., it can be taken as true information.

Consistency There is no contradiction in the data stored.

Correctness Every set of data stored represents a real world situation.

Timeliness Data is as up to date as needed.

Precision Data is stored with the precision required to characterize it.

Conciseness The real world is represented with the minimum information required for the goal it is
used for.

Getting a “high score” in one dimension does not imply that good quality has been achieved. For
example, the timeliness of data may be important only in conjunction with correctness (up to date but
incorrect data has no sense, and even may damage the organization).

To apply GQM (Section 3) we classify dimensions as either direct or indirect. Direct dimensions can be
measured directly from the application of metrics. Indirect dimensions get their values from those of other
dimensions. This notion captures the fact that all dimensions are not independent.

In other words, our metrics define a metric space over each dimension. Indirect dimensions are those
whose metric space depends on other dimensions (i.e., not part of a basis).

Following this idea, we define a standard set of dimensions to be used in every data quality measurement
process, composed by:

Direct Dimensions | Completeness, Relevance, Consistency, Correctness, Timeliness, and Precision.

Indirect Dimensions | Conciseness (depends upon Relevance), Reliability (depends upon Completeness,
Conciseness, Correctness, Timeliness, Precision, and Consistency).

117

3 Elements of the GQM Approach

GQM [3] is a framework for the definition of metrics frequently used by the software engineering
community. GQM assumes that to measure (software, processes, and so on) in a useful way, an
organization must:

. specify goals, :
. characterize them by means of questions addressing their relevant attributes,
. give measurements that may answer these questions.

We have chosen this framework because it is a top down approach that provides guidelines to define
metrics, without a-priori knowledge of the specific measures. Following GQM, we first state which
dimensions characterize our notion of data quality. Then, we can ask questions characterizing each
dimension, without giving a precise (formal) definition, and only focusing on characteristics that are
relevant from our point of view. This is important because sometimes a precise definition might be
difficult or even impossible to give. We do not want to cope with semantic issues on dimensions: our goal
is to obtain useful metrics. Finally, we derive metrics (some objective, others based on people
appreciation) to answer these questions, giving us a more precise evaluation of the quality of our data.

A goal in GQM is defined in a precise way, and is posed at a conceptual level. A goal is given for an
object, with a purpose, from a perspective, in an environment. An example of a goal in a software
organization can read: “To evaluate the maintenance process from the manager point of view in the
context of a maintenance staff comprised of new programmers.” In this example, the object is the
maintenance process, the purpose is to evaluate, the perspective is the manager’s point of view, and the
environment is the composition of the maintenance staff. The notions of perspective and environment are
crucial, because they place the metric in a specific context. It is immediate that a metric can be interpreted
in different ways, depending on who is reading it and the meaning (s)he gives to the isolated number. But
the whole approach of metrics -of measuring- is based on the idea that it is helpful to have measures, i.e.,
to define a metric space over the dimensions of interest. This kind of abstraction performs a dangerous
simplification. To overcome the potential problems of this loss of information we need to know in which
context each metric will be used. This context is given by (a.) who is going to use it and with which
purpose (the perspective) and (b.) some details of the environment that are assumed to be fixed during the
application of the metric and that influence the metric definition (the environment).

A question in GQM tries to characterize the object of measurement with respect to a selected quality
issue, and to determine its quality from the selected viewpoint. An example of a question can read: “What
is the current change processing time?” A question in GQM is posed at the operational level, contrasting
with the conceptual nature of goals.

A metric in GQM is a set of data associated with every question in order to answer it in 2 quantitative
way. Data can be objective, if it depends only on the object being measured and not on the viewpoint, or
subjective, if it depends on both. An example of a metric: “Number of days spent on a user change
request” may be a metric for the question presented above. A metric in GQM is posed at the quantitative
level. Here, in order to have a concrete way to compute the metrics, we also give techniques associated
with them.

Data collection forms (DCF) is a technique for collecting information from users, in order to compute
some of the subjective metrics defined. DCF have questions to be answered by data users. They are
intended to measure aspects that depend on user appreciation (sense, accessibility, etc.). The answers are
often predefined ordinal metrics (including explanations for each choice, as in “1. - Low, 2. -Medium, 3. -
High”), true-false, yes-no, or an absolute measure (e.g., the answer for the question “how many times do
you consult the data per day?”).

Of course, this approach is an alternative to an ad-hoc definition of metrics. We seek a sound justification
for each metric proposed. This justification will be contradicted or supported by empirical evidence after

experimentation. The way we construct the metrics ensures that every proposal comes with a justification.

There are other approaches for metric definition, e.g., [5, 10]. We have chosen GQM because of its
simplicity, because it is well known and proven in software engineering applications [17], and because it
fits our problem nicely, as we will show in the rest of the article. .

118

4 Deriving and Applying Data Quality Metrics
In this section, we outline some issues on the application of the GQM methodology to define data quality

metrics. Also, we present some of the metrics so defined. This will be done using an example. Thus, we
will also include the results of this experiment.

We do not base our proposal on this experiment. As we mentioned before, by construction, each metric is
derived top/down from goals and questions. However, we think a first feasibility experiment is needed
after going further in the implementation of metrics or investing on a more complete project. We have
chosen a simple case, as a starting point.

First, we describe the main characteristics of the experiment. Then, we apply the GQM framework to
define data quality metrics, focusing on the dimensions used in the experiment. We present how the
resulting metrics were applied in this case. Last, we include the main results and conclusions obtained.

The Experiment

We wanted to evaluate the quality of the data in the database conformed by adding the information of five
electronic personal organizer. This is a simple case study, that illustrates important data quality issues:

* As users enter data using different methodologies, or even with no criteria at all, the data stored may
have quality problems.

* The agendas themselves do not have format or content validations.

These issues let us validate and even refine our proposal to obtain more accurate results.

We saved the information in the telephone directories of the personal organizers in computer files. Then,
we modified these directories to make them uniform in format. The end result was a relational table with
all this information. We loaded this table into a relational database management system. The users were
asked about how they use their organizers, so that we could determine which functions were used the
most, and which data quality dimensions to consider.

Applying GQM

We now describe how to apply the GQM methodology in the context of data quality metrics definition.
We give the general framework and we show how we applied it in our experiment.

As mentioned above, a goal in GQM is defined for an object, with a purpose, from a perspective, in an
environment. When following GQM to define metrics for data quality, we have identified two main
objects to be measured: the set of data and the data model. The set of data is the data actually stored in
the database. The data model is how data is structured, from an implementation or a logical point of view.
When defining subjective metrics, our perspective is always the user point of view. In fact, we are trying
to measure the quality of data with respect to the organization benefits. Each goal is defined in a
particular environment. Elements of each particular environment can be among the following:

+ afixed data set (for example, the data obtained from the agendas);
- afixed data model (for example, the relational model we obtained in our experiment);

+ a fixed query set: Some of the dimensions are related to the way data may be queried. The query ser
is a set of queries of interest. Such a set can be inferred from the applications that use or generate the
data, from the intended use of data, or from the procedures the data is involved in. The set of queries
is a part of the context in which data can be used and is an explicit representation on what the
organization wants to use data for.

+ afixed set of attributes: A subset of the database attributes that is of interest for a particular metric.
This set may be defined as “temporal”, for instance if they have deadlines, i.e., they have to be
updated in order to be accurate. To deal with time, we need to identify this subset and give a
procedure to calculate, or estimate, when the data is out of date. Other attributes might be related to
particular issues, such as precision.

We have grouped the dimensions according to the object they are related to. As a consequence, we have
two groups of dimensions: data dimensions, and data model dimensions. This classification may be useful
when trying to correct the quality problems found. For our purposes, we have chosen dimensions in both
sets. However, we have found it more interesting and more original to deal with set of data dimensions. In
fact, model dimensions have been largely studied in software engineering as part of data bases definitions,
e.g., [16, 1], although our point of view is slightly different.

119

v

Next, we present some data quality metrics we defined using the GQM framework for those dimensions
presented in Section 2, in the context of our experiment. First, we introduce several goals that we have
identified for a particular dimension. Then, we include questions and metrics for each goal. Finally, we
give an operational technique to compute the associated values. In effect, we need systematic ways to
measure. However, in some cases there is no operational way to measure a specific item, or the one we
identified is too complex to use. In our experiment, we found that the personal organizers do not save logs
of the database activities. We believe that having such logs could be very useful to measure some quality
attributes, or to simplify some of the techniques proposed. Specifically, many of the metrics implemented
with DCF’s would benefit from this feature.

It is important to notice that we are not trying to be exhaustive in giving all the possible goals, questions,
and metrics for every data quality dimension, not even for our particular case study. New dimensions can
be used, new questions can be asked, new metrics can be given, and different techniques can be used.
Moreover, through experimentation we may find problems, and decide to refine, change, add, or delete
some of the metrics or even some of the dimensions.

Instance Dimension Metrics

In Table 1 we show the application of GQM to derive some data quality metrics for this case study for the

object set of data.

GOAL

QUESTION

METRIC

TECHNIQUE

Object: Set of data
Purpose: Evaluate
Quality: Completeness
Perspective: User
Environment:

-fixed data set

- fixed query set

Is all the information
necessary to represent
the real world stored?

% of queries with no
answer (considering
only queries relevant for
the organization)

Number of queries with
no answer * 100/
number of queries
considered

Object: Set of data
Purpose: Evaluate

Is all the data in the
database relevant for the

% of entries
distinguished by the

Number of entries no
used * 100 / (number of

Quality: Relevance organization? users as no used attributes * number of
Perspective: User records revised)
Environment:

-fixed data set

Object: Set of data Can we trust that the This metric will be 100 -

Purpose: Evaluate
Quality: Reliability
Perspective: User
Environment:
-fixed data set

answers obtained
represent the real world?

defined in relation to
completeness,
conciseness, correctness,
timeliness, precision,
and consistency

(100 - completeness +
100 - conciseness +
MAX(100 - consistency,
100 - timeliness,

100 - precision,

100 - correctness))

Object: Set of data
Purpose: Evaluate
Quality: Consistency
Perspective: User
Environment:

-fixed data set

Does contradiction
between data exist?

Select a fixed data set
and verify that
inconsistencies between
data in that set do not
exist

Number of
inconsistencies detected
* 100 / (number of
attributes revised *
number of records
revised)

Object: Set of data
Purpose: Evaluate
Quality: Correctness
Perspective: User
Environment:

- fixed data set

- a fixed set of attributes

Does data represent the
real world?

Select a fixed data set
and verify data either
with the user or using
real values

Number of errors
detected * 100 / (number
of attributes revised *
number of records
revised)

Object: Set of data
Purpose: Evaluate
Quality: Timeliness
Perspective: User
Environment:

- fixed data set

How much data has
passed its deadline?

Number of records with
at least one attribute in T
not updated (per time
unit) / Number of
records with at least one

Number of entries not
actualized * 100/
(number of attributes
revised * number of
records revised)

120

- T: Set of temporal
attributes

attribute in T

Object: Set of data
Purpose: Evaluate
Quality: Precision
Perspective: User
Environment:

- set of attributes that
should be stored with
some precision

Is data stored with the
necessary precision?

’
It

Selection and
verification of data by
users or real values

Number of entries stored
with not enough
precision * 100 /
(number of attributes
revised * number of
records revised)

Object: Set of data
Purpose: Evaluate
Quality: Conciseness
Perspective: User
Environment:

- fixed data set

Is some data stored
never used?

% of attributes
distinguished by the user
as not used (relevance)

% relevance

Is there data providing
no further information?

% duplicated data

duplicated data * 100 /
attributes revised

Table 1: Derivation of data quality metrics for the set of data object

To measure data completeness, each user received a DCF. Each DCF was completed with all the names
and associated data that the user considered relevant enough to store in the personal organizer. After that,
we have queried the database to know whether that data was actually stored in the agenda. The percentage
of completeness is given by:

number of pieces of data not stored in the database
number of relevant data

* 100

Each user received a DCF containing some samples from the database, in order to measure data
relevance, correctness, and timeliness. The database was ordered in different ways, and each time some
data was selected. Duplicates were eliminated. In this way, samples of approximately 130 records were
created.

The user revised and decided the relevance of each attribute instance in the DCF. The percentage of
relevance is given by:

number of entries not used * 100
number of pieces of data revised

The user revised and decided the correctness of each attribute instance in the DCF. The percentage of
correct data is given by the percentage of correct instances over the total number of instances revised,
minus the percentage of data stored with no enough precision. Correctness is given by:

number of errors detected * 100
number of records revised * number of attributes revised

The user was asked to distinguish among data which is out of date, and data which is incorrect.
Timeliness is given by:

Number of entries not actualized * 100
number of attributes revised * number of records revised

As we mentioned in Section 2, reliability is an indirect metric. In this case, reliability is given by:

100 - (100 - completeness + 100 - conciseness + MAX{100 - consistency,

timeliness, 100 - precision, 100 - correctness})

100 -

121

To measure data consistency, we considered all the records in the database. We obtained two different
measures that we combined to obtain the percentage of consistency. First, we considered the case in
which the same name contained different associated data. These two or more records could be consistent
(if the associated data is the same, or if one record complements the others), or incorrect (if the associated
information is not consistent). Second, the same analysis was carried on for two or more records
containing the same telephone number. Consistency is given by:

(number of inconsistencies w.r.t. names + number of inconsistencies w.r.t. telephones) * 100

number of records revised * number of attributes revised

To evaluate data precision, we use two heuristics. On one hand, those records with telephone field not
numeric or containing at least 4 bytes long were checked with the user. All these entries contained no
precise data. On the other hand, each record with no telephone number was checked with the user to
understand if it was correct, incomplete, or the data was stored in an incorrect way. The records stored in
an incorrect way were considered stored with no enough precision. Precision is given by:

Number of entries stored with no enough precision * 100
number of attributes revised * number of records revised

Conciseness is given by:

(number of entries not used+ number of entries duplicted)* 100
number of attributes revised * number of records revised

Model Dimension Metrics

In Table 2 we show the application of GQM to derive some data quality metrics for this case study for the
object data model.

GOAL QUESTION METRIC TECHNIQUE
Object: Data model Are there attributes that | Number of attributes Number of attributes in
Purpose: Evaluate are never accessed? never accessed the schema never used *
Quality: Relevance 100 / number of
Perspective: User attributes in the schema
Environment:
-fixed data model
-fixed query set
Object: Data model May all the data be Number of times data DCF
Purpose: Evaluate represented in the could not be stored in
Quality: Completeness | model? the database (because it
Perspective: User does not fit in the model)
Environment:
-fixed data model

Table 2: Derivation of data quality metrics for the data mode! object
In this case the schema was very simple, and no consistency problems between attributes existed. So,
conciseness is equivalent to relevance.

The relevance of the model was evaluated by asking the users which attributes of the schema they never
used. So, relevance is given by:

number of attributes of the schema never used *100
total number of attributes in the schema

To measure data completeness, users were asked whether they tried to store data that cannot be stored in
the database. This DCF was also used to ask what type of information they usually stored in the free
fields of the database.

122

ACKNOWLEDGEMENTS

This research was partially supported by the ANPCyT under grant ARTE Project, PICT 11-00000-01856
and grant PICT 11-00000-00594. We would like to thank Silvia N. Morillaz for her help in data collection
and preparation. We also thank Luis Gravano for his comments.

REFERENCES
[1] Abiteboul, S., Hull, R., Vianu, V.. Foundations of Databases, Addison-Wesley, Reading, MA, 1995.

(2] D. Ballou, G. Tayi: Enhancing Data Quality in Data Warehouse Environments, Communications of
the ACM, Vol. 42, No. 1, January 1999,

(3] Basili, V.R., Rombach, H.D.: The TAME Project: Towards Improvement-Oriented Software
Environments, /[EEE Transactions on Software Engineering, vol. 16, no. 6, June 1988.

[4] Bobrowski M., Marré, M., Yankelevich, D.: A Software Engineering View of Data Quality,
Proceedings of 2™ European Quality Week, November 1998, Brussels, Belgium.

(5] Boehm, W., Brown, J.R., Lipow, M.: Quantitative Evaluation of Software Quality, Proceedings of the
Second International Conference on Software Engineering, 1976.

(6] Fenton, N.E., Pfleeger, S.L.: Software Metrics - A Rigorous & Practical Approach, 2nd edition I TP
Press, 1997.

(7] Haebich W.. A Quantitative Model to Support Data Quality Improvement, Proceedings of the
Conference on Information Quality, MIT, Boston, October 1997.

[8] Huang, K-T,, Lee, Y., Wang, R.: Quality Information and Knowledge, Prentice-Hall, 1999.

(9] Jarke M., Vassiliou Y.: Data Warehouse Quality: A Review of the DWQ Project, Proceedings of the
Conference on Information Quality, MIT, Boston, October 1997.

(10] McCall, J.A, Richards, P.K., Walters, G.F.: Factors in Software Quality, Rome Air Development
Center, RADC TR-77-369, 1977.

[11] Redman, T.: Data Quality for the Information Age, Artech House, 1996.

(12] Redman, T.: The Impact of Poor Data Quality on the Typical Enterprise, Communications of the
ACM, Vol. 41, No. 2, pp. 79-82, February 1998.

(13] Shannon, C.E., Weaver, W.: The Mathematical Theory of Comnunication, University of Illinois
Press, Urbana, Ill, 1949.

[14] Strong, D., Lee, Y., Wang, R.: Data Quality in Context, Communications of the ACM, Vol. 40, No.
5, May, 1997.

(15] Strong, D., Lee, Y., Wang, R.: 10 Potholes in the Road of Information Quality, /EEE Computer,
August 1997.

(16] Ullman, J.D.: Principles of Database and Knowledge-Base Systems, Computer Science Press, New
York, 1989.

[17] Van Latum F., Van Solingen R., Oivo M., Hoisi B., Rombach D., and Ruhe G.: Adopting GQM-
Based Measurement in an Industrial Environment, /EEE Software, pp. 78-86. January-February 1998.

(18] Wand, Y. Wang, R.. Anchoring Data Quality Dimensions in Ontological Foundations,
Communications of the ACM, Vol. 39, No. 13, November 1996.

124

