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Abstract: In an enterprise setting, a major challenge for any data mining operation is 
managing the information, be it data or metadata, to ensure a stable and certifiably 
accurate flow of data. The data feeds are complex, numerous and often quite opaque. The 
management of frequently changing data, metadata and other information feeds presents 
a considerable challenge. In this paper, we articulate the technical issues involved in the 
task of managing enterprise data and propose a multi-disciplinary solution derived from 
fields such as knowledge engineering and statistics, to understand, standardize and 
automate information quality management for enterprise mining.   
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1 INTRODUCTION 
A substantial amount of effort in industrial applications is spent on assembling, preparing, managing and 
interpreting data and its metadata. Current work on data mining focuses on extracting relations from data 
in preexisting databases or repositories.  Much of the research pre-supposes a collection of databases that 
are available to the community, such as the World Wide Telescope (Gray, 2002) [4].  In most industrial 
applications, the data is not neatly accessible and its initial form is frequently not amenable to data 
mining.  In addition, since the data, the metadata and the knowledge needed for interpretation are 
constantly changing, data mining and related activities are a continuous process.  Finally, unlike many 
traditional mining projects, the work often occurs in an environment that differs from the original "home" 
of the data, because mining activities cannot be allowed to interfere with the production environment.   

The TDQM program at MIT has addressed the issue of data quality and information management in a 
series of publications including Data Quality Assessment by Pipino, Lee, and Wang [9] and Quality 
Information and Knowledge Management by Huang, Lee and Wang [6]. In this paper, we focus on tools 
and methodologies to implement information quality management techniques such as those discussed in 
these publications in the context of enterprise information quality management, from data gathering to 
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data mining.   
We call the process associated with assembling, preparing, managing and interpreting the data for the 

data mining process, mise en place, a cooking term, meaning "put in place," which describes the activities 
of measuring, chopping, peeling, etc., in preparation for the actual cooking process.  In a similar fashion, 
enterprise data must be prepared for data mining. Such activities include a) assembling time-dependent 
metadata, b) providing and managing a long-term repository for ephemeral data and metadata, so that 
longitudinal trends may be deduced and, c) monitoring and improving the quality of the data.  In many 
industrial settings the bulk of the effort for a data mining project focuses on these mise en place activities.  
Without these activities, meaningful data mining would be impossible. Data preparation for data mining 
has been addressed by Pyle in [10].  

Our goals are a) to develop awareness for the important role these activities play, and b) to standardize 
and automate preparation activities through supporting tools, methodology, and techniques, so that less 
effort is spent on preparation and more on data mining.  Key techniques we are using to understand, 
standardize and automate this process are derived both from artificial intelligence and statistics, and 
include: knowledge engineering, planning, constraint management and rule based programming. 

The remainder of this paper: describes the differences between traditional and industrial data mining, 
highlights the industrial issues, discusses the technology used and presents a case study of our approach, 
focusing on data assembly and information quality management issues. 

2 PREPARATION OF INFORMATION  FOR DATA MINING 
The World Wide Telescope project (Gray, 2002) [4] is typical of many research oriented data mining 
projects.  As Gray reports, in projects such as this, the data is well documented, software exists to process 
the data and federate with other archives, and the database plumbing and metadata management are in 
place.  Indeed, Gray remarks that gathering the astronomical data and producing the catalogs comprises 
75% of the effort.  It is only then that data mining can begin. 

In most industrial projects rarely does such preparation exist. Since the data that support different 
aspects of the business (e.g., billing, provisioning, and contracts) are scattered across the enterprise, the 
data mining team must tap into feeds of data from appropriate enterprise data streams and assemble that 
data and relevant metadata in a local resource that can be devoted to data mining.  Furthermore, if 
longitudinal mining is necessary, the project must arrange for data archives, since they likely do not exist 
on the enterprise site.  Only after all these elements are in place can the industrial team begin the process 
of constructing software and documentation to support the data mining process.  These ongoing mise en 
place activities consume the majority of the effort in most industrial data mining projects and may be the 
most important activity to engineer and automate.  Our goal is to devise and promote techniques that 
reduce the time and effort for these activities, transforming the “one-of’s” to repeatable, automated 
processes and abstract general techniques. 

3 THE MISE EN PLACE PROBLEM IN INDUSTRIAL DATA MINING 
APPLICATIONS 

As mentioned, traditional data mining techniques assume that a data matrix has been prepared and put in 
place. Frequently, the matrix includes attributes whose values change over time, but the data itself is 
considered to be terminal in the sense that it has reached maturity and stabilized in terms of the attributes 
and inter-relationships. The underlying structure characterized by statistical distributions could be 
arbitrarily complex but any changes over time are assumed to be minor and captured by tuning the model 
parameters. 
The problem is much different in industry. Businesses change, products change, technologies that support 
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the operations change. In response, the data feeds themselves are in a state of constant change. Therefore, 
given multiple data feeds, each consisting of many files, with incomplete data description and unknown 
data flaws, we must develop a framework that: (1) insures that all the relevant data and metadata have 
arrived at the data mining center, (2) transmits the data and metadata to appropriate machine resources for 
analysis, (3) assembles the data and metadata on those resources, (4) checks relevant constraints between 
the data for a given analysis run and (5) archives the data appropriate to its phase in the life cycle. We 
consider this to be a significant part of the metaphorical iceberg (Figure 1), the tip of which corresponds 
to conventional data mining activities. 

 
FIGURE 1 

3.1 Data Assembly 
Data miners who analyze data during all stages of its life cycle have the daunting challenge of interpreting 
data streams that are very minimally documented at best. Assumptions of a reasonable schema and well-
behaved data are unrealistic. Hundreds of data feeds with complex semantics and attributes arrive 
continuously (Figure 2). They have inter-relationships that have to be inferred because at times even the 
systems that create them are unaware of these inter-relationships, as they see only a small part of the 
overarching process that produces and interprets the data.  Synchronizing feeds is always an issue. To 
complicate matters further, data feeds are corrupted or broken and there may only be a small window of 
time (hours) to recover before losing the data forever. We will see concrete examples in the Case Study 
section.  
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FIGURE 2 

3.2 Information Management: Archiving 
Because the data mining project is often the only long-term repository for enterprise data, loss of any data 
whatsoever is not acceptable.  There are sometimes legal requirements for retaining data, especially in the 
case of regulated service industries.  Stewardship of the data, therefore, is actually an essential aspect of 
enterprise data mining activities.  Because all media can be expected to fail at a certain rate, the chief tool 
for protecting against loss is replication.   
 

A serious project needs to have replication rules and a process that implements them.  For example, one 
set of rules might be, for all data coming within the data mining umbrella, at all times: (1) if no 
replications are on tape, three replications must be on hard disk. (2) If 1 replication is on tape, then at least 
two replications must be on hard disk. (3) If 2 replications on tape, then hard disk replications may be 
removed. Notice that the rules imply a database that keeps track of the state of each replicated entity.   
 

The scale at which enterprise data is created and the complex system infrastructure on which it resides,  
transforms this into a significant and challenging problem.  We have experience with implementing, and 
executing on requirements for archiving and safeguarding information arriving at a rate of between 35 
and 70 terabytes per year. When the scale of coverage is, say, two million files and 35 terabytes of data, 
there is no choice but to turn to an automated process to make even these simple rules practical.  Later 
will we discuss an automation technology for implementing archiving rules such as the above. 

4 APPROACHES 
A key task in knowledge engineering the automation of data and metadata management is managing 
constraints. Interdependences in feeds of data and metadata, their interpretation, as well as synchronizing 
and ordering data management tasks, are often expressed by subject matter experts as constraints. For 
example, “If an item is sold in NJ, send it to Biller #3” or “If a sale is less than $0.20, drop it altogether”. 
Many data quality metrics too are articulated as constraints, such as “If a data record needs manual 
intervention in order to complete the process successfully, then it contains bad data”. Managing these 
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constraints is accomplished within the technology context of rule-based programming and planning. ” 
Please see (Dasu et al, 2003 [2]) for a motivation of the relationship between data interpretation, 
constraints and rule based programming. 

4.1 Constraints Represented as Rules 
There are many approaches for managing constraints related to data interpretation. These range from ad 
hoc, informal techniques to formal ones like the constraints enforced via database triggers. No single 
solution offers all the answers. 

Embedding the constraints in a source code that “prepares” the data for data mining activities is a 
common approach. Often, this results in a single monolithic body of code that integrates, prepares and 
analyzes the data. This is particularly true when the data are not resident in a formal database. While this 
approach is effective for quick and easy projects, it is inappropriate for projects that span several data 
warehouses and/or have strong temporal aspects. The code becomes complex and opaque. Making 
changes can result in unpredictable outcomes, as it is difficult to check the impact of the changes and their 
interaction with the existing code. Retrieving metadata for newcomers or for non-technical experts is next 
to impossible.  

The flexibility of rule based programming, the separation of knowledge and control, and the ability to 
trace the effect of the rules, make it a nice platform for incorporating and managing constraints. 
Furthermore, the rules are easily understood by experts who articulate them, so that validating them is 
easy. This issue is particularly important while resolving conflicting metadata from multiple experts. 

In addition to rules, a part of managing metadata and constraints involves incorporating analysis, such 
as statistical tests for detecting changes in distributions. Such tests can be simple such as univariate tests 
for a known distribution or can be more complex, seeking to capture multivariate joint distributions. 
Providing this functionality is an important part of the mise en place process. We demonstrate this in the 
“alerts” discussed in the case study section.  

4.2 Constraints Represented as Plans 
Recent research in AI has amply demonstrated the connection between planning and constraint 
satisfaction (Weld, 1999 [12]). In addition, there have been important developments in action monitoring 
and dynamic replanning when failures occur.  This research has been applied to some important practical 
problems such as the Mars lander robot, and we think it all may be coming together to provide some 
powerful automation tools for the mise en place problem in data mining. 

A plan is simply a sequence of actions that, if executed, will achieve some goal.  Data mining related 
actions, for example, might include file transfer, format conversion, cataloguing, as well as execution of 
the analysis and reporting of the analysis itself.   

Intuitively, we think that plans could serve as the core structure around which many of the activities 
associated with data mining could be automated.  Aside from the guidance it provides with respect to task 
execution, it provides structure for monitoring, diagnosing, and even resolving problems that occur during 
plan execution.  The inherent understandability of a plan by humans is an important feature supporting 
the Knowledge Engineering process.  A plan may also serve as a benchmark against which human 
operators can monitor and judge progress.  It could allow precise and accurate status descriptions stated at 
an appropriate level. 

Much more is now known about how to monitor the execution of a plan and how to replan in the face of 
failure.  Even if replanning is not possible or not successful, information gained through automatic 
replanning could be used to compose alerts for human operators, who might then resolve conflicts and 
deadlocks. 

Finally, for practical applications, detailed plans are needed to accurately predict completion dates and 
times.  It is easy to underestimate the importance of this element unless one has experience with real 
clients. 

One key development in planning has been the dramatic increase in the size of problems that planning 
algorithms have been able to solve.  This has been driven to a significant extent by progress in constraint 
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satisfaction and search technology.  In addition, work in execution monitoring and dynamic replanning 
(Hammond, 1990)[5]) seems to be quite important to our class of applications. 

Much of the progress has come about because of the recognition that there is a close connection 
between planning and constraint satisfaction. Planning requires three things: (1) Description of the 
starting state (2) Description of the goal to be achieved and (3) Description of the possible actions that 
can be performed. The set of possible actions is sometimes called a Domain Theory. Descriptions of 
states, actions and goals are typically expressed in some formal language. Classical planning is based on 
the STRIPS representation (Fikes and Nilsson, 1971)[3].  In this representation, states are represented by 
conjunctions of predicates applied to constant terms.  Predicates are allowed to be negated.  Actions are 
simply state descriptions with pre-action (precondition) and post-action (effect) clauses. STRIPS 
representation limits the size of the problems planners can deal with, partly because the use of constants 
causes the search space to explode.  In addition, it lacks the expressiveness needed to implement 
replanning.  However we have found the straightforward STRIPS implementation suitable for our current 
needs and since it is the basis for modern planning approaches, it provides the flexibility to move to them 
if necessary. 

5 CASE STUDY 
In this section, we will describe in broad terms the class of real-world enterprise data mining projects that 
illustrate the preceding discussion and focus on the mise en place activities of data assembly and 
archiving. Most commonly, data originates within legacy systems that control and support major business 
processes.  The legacy systems execute a large number of transactions, perhaps billions per month, and 
data records are created with every transaction.  It is very important not to impact the ability of these 
systems to perform their control and support functions. Periodically, perhaps once an hour, transaction 
records are extracted from the legacy systems and written into files.  These files are transmitted for 
auditing as they are written.  There is a narrow window within which a file can be retransmitted if there is 
a transmission failure or the file is somehow corrupted after a successful transmission.  Otherwise, the file 
and its data are lost, since they are routed to other enterprise systems for parsing, translation and 
summarization. The quality of this data is very important, because it is the primary means of 
understanding and analyzing the associated business processes. Strict reporting requirements permit no 
data ever to be lost. At the very least, lost data at any level causes major concern. 

Analysis of these data consists of selecting an appropriate bundle of files, transferring them to an 
execution platform, performing the analysis by running programs over each file and accumulating the 
results. While human resources could be applied to the problem, even the best human operators introduce 
errors and mistakes into the process due to the scale of the task (we are all human, after all).  Automation 
of the process is desirable both from a cost and a quality perspective. 

There is continuous, ongoing activity involving transferring, receiving, and cataloguing the incoming 
files -- over the long haul, millions of files will be received, catalogued, processed and analyzed, and 
finally archived.  Processing also may involve several transformations, for example, compressing or 
translating from EBCDIC to ASCII format.  Header information is extracted, interpreted and saved as part 
the cataloguing process.   

The first step in performing an analysis is bundling an appropriate set of files -- thousands of files could 
be processed in a single run. The files that are bundled are subject to various correctness and quality 
checks.  Missing files must be located and restored, if possible. Next, the files must be transferred to an 
appropriate execution platform where an analysis program is applied to each file producing a summary of 
its contents.  The program often requires auxiliary files, for example, tables that are date-sensitive, 
perhaps valid only for a specific time period.  Practically speaking, the analysis routines are often very 
simple, largely consisting of record filtering and counting. In some cases, matching records arising from 
various legacy systems is involved. 

Errors can be encountered on any file.  Each one must be corrected before the analysis routines can be 
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resumed. The individual file summaries must be combined into an overall report, and there is a validation 
exercise on the overall results. Occasionally, reruns of the process are required. 

We can tell, even from our high-level description, that these sub-problems can be linearized, which 
simplifies the planning problem considerably.  Each of these can be attacked separately, and we may find 
that an eclectic approach, allowing the nature of each sub-problem to dictate an approach, works the best.  
Finally the files must be archived for future analysis and potential longitudinal studies.  The disposition of 
the data is constrained by the phase in the lifecycle and will be discussed further in section 5.2. 

 

5.1 Description of Application 
In this section, we present a simplified version of the real life application. We are deliberately vague on 
specifics for proprietary reasons. A big corporation wants to be able to account for every unit of service it 
provides to its customers and to bill the customers accurately. The measurement of the service units is 
transmitted in a standard record layout of considerable semantic complexity. The record is then parsed 
and retransmitted to downstream applications in simpler, application-specific chunks. For example, a 
billing system will receive a re-formatted record with just the relevant information it needs.  

The feeds are received and staged on a Unix cluster where various enterprise applications (for example, 
revenue assurance) can have access to a persistent and certifiably healthy set of data during its entire life 
cycle. The details of the Unix cluster and its architecture are discussed in Hume and Daniels [7]. A 
simplified diagram of the cluster is represented in Figure 3. There are three nodes in the cluster. At any 
point in time, one of the nodes is the leader. Applications and requests are submitted to the leader using a 
high-level interface language. The cluster level job scheduler sends the jobs off to the appropriate node, 
where the node level job scheduler arranges for the execution of the job. The files are replicated on 
various clusters and written to tape to safeguard against accidental file loss. The replication manager is a 
database that keeps track of file replications and their locations. There are other details such as satellite 
clusters that act as gateways for receiving and vetting files that are not represented in Figure 3. In this 
case study, we focus on the methodology used to “stage” the data for life cycle data mining.  
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FIGURE 3 
 

The idea is to use “agents” incorporating rules (courtesy Tom Kirk, AT&T Labs) to monitor the cluster 
for inconsistencies in data and process. The agents are vehicles for implementing an array of statistical 
and graphical tests for identifying inconsistencies in process and data. Another big part of the task is to 
implement the process and business rules articulated by the domain experts as constraints that can be 
expressed and validated in the rule-based programming techniques. Please see [2] for the relationship 
between data quality and knowledge engineering.  

In order to simplify the explanation, we focus on a particular set of feeds that serve a single application. 
In reality, there are many applications that access hundred of feeds of thousands of files. For this 
application, we receive approximately 200 files a day of varying sizes, shapes and content. An important 
consideration is that we have a small window (a few hours) to ask for retransmission of lost or damaged 
files, to avoid permanent data loss.  

As an initial alerting mechanism, we built a simple univariate, nonparametric control chart for detecting 
holes in feeds – either due to missing files or due to smaller file sizes than usual. Smaller file sizes 
indicate data that has never been sent or data that got lost in transit. While we show simple univariate 
charts in this paper, we are developing multivariate nonparametric tests as well. Figures 4 and 5 show the 
fluctuation in files received and the total file size by hour. We can clearly see the daily and weekly cycle 
in file sizes. The big spike corresponds to a large transmission that compensates for the data gap that just 
precedes it.  

 
   FIGURE 4           FIGURE 5 
Figures 6 and 7 show the confidence bounds for a daily cycle of files to be received. We computed the 

predicted value and confidence bounds using metrics based on the median and the inter quartile range 
over a stable period of time. Figure 6 shows a normal cycle where the file sizes received were within 
acceptable bounds of the expected. Figure 7 shows an abnormal day with two hours of no transmission 
followed by a spike of cumulative transmission. This is often due to problems with transmission 
protocols. Note that the systems should be designed to handle such spurts in transmission.  
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   FIGURE 6          FIGURE 7 
Next, we developed a set of rules for safely storing the data using replication by consulting domain 

experts. The rules, which represent the desired state of the system, can be roughly stated as: (1) Every file 
should be written to exactly two distinct tape volumes within 24 hours of being received. (2) Depending 
on the application, each file should be replicated on the appropriate cluster and be available in a 
certifiably accurate state for a specified period of time. The experts provide the specification parameters. 
(3) The md5sum, which is an encoding that uniquely represents the contents of the file, should be 
identical on all the replications. (4) The file sizes should be identical on all the replications, barring 
differences in compression algorithms. (5) There should be a one-to-one mapping between a file_id and 
its md5sum. This is to ensure that we are not burdened with file duplication other than mandated by the 
replication scheme. (6) Certain events happen in the life cycle of a file. Some of these are file received, 
file written to tape, failure in receiving tape, and being “consumed” by an application. Unexpected 
sequence of events e.g. file written to tape more than 3 times, multiple failures in receiving a file, or a file 
being consumed without being written to tape first, are worthy of scrutiny.  

While any language can be used to implement these rules, we feel that a rule based programming 
language is ideal for capturing the constraint satisfaction flavor of these rules while providing flexibility 
in capturing and updating the ever-changing rules.  

Inconsistencies Revealed: We implemented a variety of rules derived from the desired goal-state of the 
system mentioned above. We give a brief account of the inconsistencies that were revealed by validating 
the data against the rules. Of the 86,500 application-specific files accumulated during our study, 1350 
files had mismatched md5 sums. A majority of these could be traced back to a bug in the file transmission 
protocol, where an empty file and the corresponding correct file would be transmitted within a short time 
of each other. The remaining were truly damaged files, truncated or otherwise mutilated during 
transmission. 

We analyzed the sequence of events that happened in the life cycle of files. The four events that we 
mention here are Transmission Failure, Status, Tape Replication and Consumed by Application. Note that 
in reality there are many more events that happen. A file can be consumed by multiple applications. The 
interaction between applications can sometimes be inferred from these sequences, helping us to design a 
more efficient process.  

In Table 1, we show a symbolic representation of the frequency of events and the number of files that 
exhibited that particular frequency of events. For example, the first data row indicates that there were 
52,388 that had 0 transmission failures, that had 0 updates on the Status flag, that were written to tape 
once and that were consumed 0 times.  Note that this is a form of data reduction where we represent the 
sequence of events by a frequency of counts of the events. While there is a loss of information (the exact 
sequence of events is lost as is the knowledge of the duration of the inter-event intervals), the frequency 
counts help us to compare the files based on event sequences in a simple manner. More complex analyses 
using point process methodologies are possible as well. We skipped many rows (around 90) in the table to 
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include two peculiar examples. The last two rows are instances of files that experienced transmission 
failure 53 and 97 times respectively! Fortunately there are not too many such files. A further examination 
of the files revealed that they were caught in a software glitch in the file transmission software that was 
soon fixed by the vendor of the software.   

Table 1. Multiple Events in the Life Cycle of Files 

Event Frequency Sequence File Frequency 
0.0.1.0 52388 
0.0.2.0 16222 
0.0.2.1 7556 
0.1.1.0 1848 … 
53.1.2.1 1 
97.1.2.1 1 

 

5.2 Data Management: File Archiving 
The next concern we had was with files being written to tape. Our desired state for the system is that a file 
should be written to tape exactly two times within 24 hours of receipt. Figure 8 indicates that a majority 
of files are not written to tape more than once (red region, written to tape once and no replications on hard 
disk), well past the recommended 24-hour deadline.  

 
FIGURE 8 

 
An examination of the process revealed that once every few months, a manual intervention would write 

hundred of thousands of files en masse to tape. However, in the interest of data safety, the process should 
be modified suitably.  A simplification of the scheme we are currently implementing is to consider a data 
file to be in a certain life cycle phase.  Although the actual categorization is more dynamic, a file can be 
considered in one of three phases:  new files that have just been received by the cluster, in-process files 
that are the current objects of analysis (consumed files), and archive files that are ready to be placed on 
tape.  For the planning analysis initial states may vary and must be computed by the rules.  Goal states 
depend on the lifecycle phase of the tape.  For example, for new files the goal is to have at least two 
copies of each file on each cluster in the data center, each on a different node.  On the other hand, for 
archive files, the goal state is to have at least two copies of files, each on a different tape.  Finally for in-
process files there must be two copies of the files on a cluster, each copy on a different node and a copy 
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on tape.  These initial and goal states for each of the life cycle phase are shown in Table 2. Variables and 
constants in STRIPS begin with a “?” and, in our description, ?c1x refers to a specific node on the cluster 
c1 and ?t refers to tapes. 

 
Table 2. Initial and Goal States in STRIPS notation. 

 
 
 
 
 
 
 

Space does not permit us to provide similar tables for the operators for this application and their 
preconditions and effects.  We are currently in the process of implementing this in STRIPS. 

6 CONCLUSIONS 
In this paper, we have proposed an important area of research in managing and mining constantly 
changing, large-scale information feeds in production settings. The task of data mining in such a setting 
offers challenges that are very distinct from traditional data mining scenarios. Much of the ongoing work 
in data mining is analysis focused, and does not address the areas that seem to us the most problematic in 
a practical setting.   The mise en place analogy is an accurate one.  Most of the work in all the data mining 
projects we have been associated takes place in the preparation stage, prior to analysis.  We feel that there 
are interesting problems to be solved in this stage, and the touchstones between constraint satisfaction, 
constraint management, and planning suggest ways that we could work together. 

Adding domain knowledge to a planning system can be surprisingly effective, even when simple 
planning algorithms are used (McDermott, 1996 [8]; Bacchus and Teh, 1998)[1]).  One interesting 
possibility might be to merge the new planning algorithms with methods that have proven effective in 
engineering expert systems (such as rule-based programming, e.g. Vesonder, 1988 [11]). 

Because generalized search can be implemented as production rules, we think it will be possible to 
implement the planning algorithms in a rule-based system.  In that case, the use of the rule representation 
would provide an effective platform for knowledge engineering, and would directly support a variety of 
methods that have proved effective in developing the practical rule-based systems of the past. 

The success of such a scheme probably hinges on how much benefit can be gained from incorporating 
domain knowledge into the planning algorithm, and we would expect this to vary from application to 
application.  In any case, constraint rules provide a natural path for incorporating domain knowledge into 
a planning system. 

Solutions for this complex and dynamic problem can be potentially drawn from the areas of constraint 
management and planning. While the constraint database community addresses constraint management, 
there is a gap between the existing functionality and the problem that can be bridged through 
collaboration with the constraint management philosophies in the knowledge engineering community of 
AI. Our future work is in this direction. 
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