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Abstract: To detect erroneous data points within a set, one must first understand how the data is usually 

distributed. Often in our analysis of data, we assume a data set to be normal (that is to follow a normal distribution 

or be normally distributed). This often is not the case, however, particularly when dealing with human-centric 

events such as web site hits, word usage, or author citations. In this paper, we examine the power law distribution 

and the types of data that should be tested for such a distribution. We present test methods and results from the 

testing of the robustness of a power law distribution under conditions of randomly generated errors in the data set, 

and discuss methods for error detection in data sets with this type of distribution. We conclude with a discussion of 

future research. 
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INTRODUCTION 
One often begins an analysis of a set of data by plotting the variables as a graph, and determining the mean, 

median and variance of the data. If the distribution is found to be normal, we unlock a variety of useful 

functions for dealing with this data. Normal distributions are the most widely used model for random 

variables with a continuous distribution and often it is a “mathematical convenience to assume that the 

distribution from which a random sample is drawn is a normal distribution [2]”. While other distributions 

are also popular and widespread in physical science and human events, often we first consider a normal 

distribution as a fit for the data set. As we will see in our subsequent analysis, this can obscure the true 

distribution of the data and therefore meaningful further analysis of outliers or variances in the data set.  

As an illustration, we take the data in Table 1 below.  

 

 

 

 

 

 

 

 

 



 

Number Count Number Count 

1 214 28 1145 

2 227 29 946 

3 233 30 840 

4 261 31 645 

5 277 32 553 

6 288 33 544 

7 297 34 488 

8 303 35 486 

9 309 36 414 

10 352 37 403 

11 366 38 381 

12 368 39 375 

13 374 40 353 

14 403 41 349 

15 416 42 340 

16 516 43 300 

17 525 44 296 

18 531 45 286 

19 584 46 262 

20 663 47 251 

21 846 48 239 

22 934 49 224 

23 1101 50 223 

24 2268 51 218 

25 2006 52 217 

26 8024 53 203 

27 5184 54 201 

 

Table 1: Data Counts 

 

Upon initial graphing of this data we see a distribution that appears normal, see Figure 1. 
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Figure 1: Initial Graphing of data count 

 

Upon examination of mean, median, and mode however we find that the three are close but are not equal.  

mean median mode 

723 371 403 

 

Undaunted we consider the high center point – (#26 – 8024) a probable outlier and the numbers become 

closer to a normal distribution, as does the graph.  

mean median mode 

497 367 403 

 

Because it is simply more convenient, we then consider the distribution normal, determine the standard 

deviation and consider all points outside of three standard deviations outliers. In either case above 

(dropping or keeping data point #26 in our calculation), we can consider the highest value as an outlier 
1
. 

 

All of this is nonsense and an example of poor statistical analysis (however common it may be), because as 

we will see in the discussion below, this set of data is actually linguistic and follows a Zipfian distribution. 

But for the sake of discussion and illustration, let us look at what would happen if we misclassify the data 

as normal and have an error occur in the data set. If we erroneously increase data point #21 by a factor of 2 

it becomes 1692 and in either scenario this falls within an acceptable range for this distribution and would 

not be flagged as an outlier.  

 

As we have already discussed, however, this data actually represents word counts inputted to ALICE [11], 

in the authors’ opinion a fantastic Chat Bot developed by Dr. Richard S. Wallace of the ALICE Artificial 

Intelligence foundation
2
. By understanding that the data is linguistic in nature, we would naturally 

experiment with a Zipfian or power law distribution instead. Ranking and then plotting the data on a log-

log graph we discover the power law distribution of the data as shown in Table 2 and Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        
1 In the first case σ = 1261, 3 σ = 3782 and in the second case σ = 405, 3 σ = 1711. 
2 http://alicebot.blogspot.com/ 



 

 

Rank Count          Rank           Count 

1 8024 28 368 

2 5184 29 366 

3 2268 30 353 

4 2006 31 352 

5 1145 32 349 

6 1101 33 340 

7 946 34 309 

8 934 35 303 

9 846 36 300 

10 840 37 297 

11 663 38 296 

12 645 39 288 

13 584 40 286 

14 553 41 277 

15 544 42 262 

16 531 43 261 

17 525 44 251 

18 516 45 239 

19 488 46 233 

20 486 47 227 

21 416 48 224 

22 414 49 223 

23 403 50 218 

24 403 51 217 

25 381 52 214 

26 375 53 203 

27 374 54 201 

Table 2: Ranked Data and Count 
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Figure 2: Distribution of data 



 

 

In this plotting and understanding of the data, if data point #21 (count 846) were to suddenly double, this 

would easily be highlighted in the graph and brought to the attention of the data analyst.  

 

Note: This was an illustrative example of the errors that may occur in assuming a data set is normally 

distributed and does not represent how the ALICE AI Foundation used or analyzed the data above.  

 

While determination of outliers within a normal distribution is commonplace and well represented in the 

literature, determination of outliers (perhaps errors in the data) in power law distributions is less popular in 

the literature. In our research, we will attempt to utilize the power law distribution to uncover data 

inaccuracies in experimental data sets that follow a power law distribution. Our goal is to uncover 

inaccuracies that might not be easily recognized when data is plotted as a normal distribution. As we 

present here, during this phase of our research we test the robustness of a power law distribution under 

randomly generated errors in the set and explore methods for the determination of inaccurate sets.  

 

REVIEW OF LITERATURE 
A normal distribution is a special type of standard distribution which follows a bell-shaped curve pattern 

over a set of data. This bell-shaped curve has several key properties.  The distribution is always symmetric, 

it is concentrated in the center and decreases rapidly on either side, meaning that the data has less frequent 

near extreme values.  The area under the curve has a direct correlation to the probability that that value has 

of occurring.  A large area implies a large probability and a small area implies a small probability [9]. 

Normal distributions follow the form:  
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 , where x is the variant with mean µ and variance σ². 

Data that follow a normal distribution obey the central limit theorem, which states that for any distribution 

with mean µ and variance σ², the distribution approaches normal as the sample size continues to increase.   

After determining that a function is normal, outliers can then be calculated using Grubb’s Test [4].  

According to this test, any data point located beyond 
sYY )( min−

 or 
sYY )( max−

, where Y is the sample 

mean and s is the standard deviation,  is considered an outlier. 

While the normal distribution is often assumed, other distributions do exist, including the power law 

distribution. A power law distribution is a mathematical relationship between two quantities where the 

number or frequency of an event varies as a power of some attribute of that object.  The law normally 

appears in the form:  

)()( kk xoaxxF +=
, where a and k are constants, o(x

k
) is an asymptotically small function of x

k
, and  k is 

a scaling exponent [7]. 

Pareto is the most famous for using this law with his “80-20” theory, which states that 20% of the 

population holds 80% of the wealth.  The graph of this power rank function looks close to exponential, 

although reversed.  Showing that a small percentage contains most of the wealth and as the percentage 

increases, the distribution falls drastically until it bottoms out along the x-axis. [5]. 

Zipf’s Law is another special type of power law distribution, where the constants are zero.  Harvard 

linguist George Kingsley Zipf observed that if values are given ranks in descending order, that the values 

are inversely proportional to their ranks compared to the highest rank.  That is, the rank two value occurs 

½ as much as rank one, while rank three occurs 1/3 as often.  

According to Zipf’s law, when the log of the rank is plotted against the log of the values, a line is formed.  

This is very helpful when determining if a distribution does indeed follow Zipf’s law.  To determine this, 



 

the correlation coefficient is calculated using the logarithmic values of the ranks and data.  This coefficient 

is a number ranging from [-1,1] where the closer to one, or negative one, the value is, the closer it is to a 

line. While originally used with linguistic data sets, Zipf’s law has been influential in many fields, including 

computer music [3]. 

 

Determining that a data set displays a power law distribution is a challenging research question. The 

authors shall summarize here pivotal work in this field by Caluset et al [1]. In their research, Clauset et al 

summarize several data sets that are assumed to have power law distributions, among these count of word 

use from Moby Dick, book sales, papers authored, and population of cities. They then summarize the most 

popular method of categorizing a data set as having a power law distribution, which we explained above – 

plotting the log of the count by the log of the rank of the values and determining through linear regression if 

the values create a line. There are problems with using this naive method for determining a power law 

distribution as explained in Clauset et al. Their research goes further and the team creates its own methods 

for determining a power rank distribution. For a thorough summary of the power law and Clauset et al’s 

work we encourage the reader to view the paper in its entirety. While we did not use their particular 

methods and algorithms instead maintaining the usual method of plotting a log-log graph and determining 

the slope and correlation coefficient, we did rely on their research to determine which data sets should be 

considered to have follow a power law distribution.  

 

METHODS FOR THE DETECTION OF INACCURATE DATA SETS 
Assuming a power law distribution has been determined, we wish to have methods for the detection of 

errors within the set (or errors in new data points coming into the set). We present and test three methods 

for determining inaccuracies in this type of distribution: 

 

1. Value of the slope of the line created by plotting the log(rank) log(count) of the data variables. 

 

2. Change in the value of the slope of the line created by plotting the log(rank) log(count) of the 

data variables. 

 

3. Change in the correlation coefficient values (how closely the data fit a line).  

 

In this initial research we chose to look at the slope of the resulting line, change in the slope from a gold 

standard data set, and to analyze any changes in the correlation coefficient (how closely the data fit a line). 

In order to test these methods and determine how data sets with a power law distribution handle errors in 

the data, we create the following test data sets and perform our tests.  
 

CREATION OF TEST DATA SETS 
In order to test the robustness of data sets conforming to a power law distribution under situations of 

inaccurate data, we created test sets with randomly corrupted data in differing percentages. For instance, 

we take our initial data set, which follows a power law distribution, and label it the Gold Standard data set. 

We then use our random number generator to produce erroneous data in differing percentages, 1%, 3%, 

15%. etc. We then test the data to determine the resulting slope and correlation coefficients.  

 

In order to create random erroneous data, we corrupted the data using two methods. In the first method, we 

used the Perl random number generator with a range from 0 to 10 percent greater than the highest value in 

the particular data set. This appeared to skew the random numbers higher than would be likely in erroneous 

data, so we also created a second method where we took the randomly generated value between 0 and 10 

percent above the highest value, and used that as the top value to randomly generate a second number. 



 

Results from both types of randomly generated data errors followed a similar pattern. See our Perl script in 

Appendix B. 

 

Our Gold Standard data sets were chosen based on their conformity to a power law distribution as outlined 

in [1]. We chose sets with p-values greater than 0.10 corresponding to a statistically significant power-law 

fit. For our research we chose the following data sets and would like to thank Clauset et al for providing 

links and resources for these and other possible power law distribution data sets on their website: 

A) Word Count – this is a count of the frequency of unique words from the novel Moby Dick by 

Herman Melville [9].  

 

B) Solar Flares – count of the peak intensity of solar flares between 1980-1989 [9]. 

 

C) Names – the frequency of the occurrence of family surnames in the US 1990 census [10]. 

 

D) Citations – Author citations in June 1997 by authors published in 1981 [6].  

 

E) Religious Affiliation – religious affiliation in the US as reported by the website adherents.com 

[8]. 

 

Each of the above data sets was considered the Gold Standard set, and was corrupted in different 

percentages by the two random number generation methods as described above.  
 

TEST RESULTS 
Our test results are presented below in chart and graphical form. The results for change in slope were not 

promising and are therefore shown only in Appendix A. Also, due to space limitations, in Appendix A we 

show full results for only one of the two random error generation methods because the results were similar. 

The full results can be obtained by emailing the authors. 

 
Percent Corrupt R - squared value Random Method I

Word Count Solar Flares Family Name Citations Religious

Gold Standard - 0% -0.988579 -0.992570 -0.994842 -0.987608 -0.939689

1% -0.977787 -0.977897 -0.997266 -0.992400 -0.939689

2% -0.958271 -0.960423 -0.993554 -0.990630 -0.939689

3% -0.946614 -0.948668 -0.987005 -0.981541 -0.939689

4% -0.937757 -0.939553 -0.975075 -0.966808 -0.939689

5% -0.926703 -0.928075 -0.962358 -0.945712 -0.916498

6% -0.911636 -0.913613 -0.945028 -0.925201 -0.912175

7% -0.892204 -0.895342 -0.926630 -0.902501 -0.905218

8% -0.870329 -0.872613 -0.903462 -0.873514 -0.884737

9% -0.857065 -0.847017 -0.879958 -0.839687 -0.884299

10% -0.837566 -0.819033 -0.853686 -0.806561 -0.872218

11% -0.814163 -0.790224 -0.832537 -0.766355 -0.809960

12% -0.788848 -0.760147 -0.810317 -0.726180 -0.761718

13% -0.762256 -0.729522 -0.785785 -0.692132 -0.751060

14% -0.733374 -0.700011 -0.759144 -0.660768 -0.740559

15% -0.706243 -0.670777 -0.738759 -0.621011 -0.745369

20% -0.673616 -0.641851 -0.714443 -0.587464 -0.774571

25% -0.638245 -0.615828 -0.689070 -0.548562 -0.712225

30% -0.606023 -0.587774 -0.663526 -0.509061 -0.714426

35% -0.612337 -0.567309 -0.638208 -0.480668 -0.767803

40% -0.614250 -0.552448 -0.624336 -0.467117 -0.753158

45% -0.636806 -0.551619 -0.621493 -0.466787 -0.776767

50% -0.667539 -0.559030 -0.634528 -0.502952 -0.712290  



 

Table 3: Overall results Correlation Coefficient Change (r-squared value) for errors generated with random 

generation method I 
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Figure 3: Overall Results Method I 

 
Percent Corrupt R - squared value Random Method II

Word Count Solar Flares Family Name Citations Religious

Gold Standard - 0% -0.988579 -0.992570 -0.994842 -0.987608 -0.939689

1% -0.978572 -0.981384 -0.995643 -0.992367 -0.939689

2% -0.961307 -0.966405 -0.993760 -0.990391 -0.939689

3% -0.950432 -0.954958 -0.986636 -0.981653 -0.939689

4% -0.941061 -0.944805 -0.975702 -0.966876 -0.939689

5% -0.929961 -0.933324 -0.961673 -0.947337 -0.925849

6% -0.915121 -0.918234 -0.945889 -0.922518 -0.905163

7% -0.896919 -0.899130 -0.927446 -0.899288 -0.893834

8% -0.873743 -0.876048 -0.905224 -0.869428 -0.869612

9% -0.847091 -0.852133 -0.881373 -0.834736 -0.856037

10% -0.818618 -0.824686 -0.856301 -0.806868 -0.855829

11% -0.787823 -0.794837 -0.834615 -0.771993 -0.827903

12% -0.756305 -0.765638 -0.811573 -0.738513 -0.813643

13% -0.726605 -0.735462 -0.784663 -0.695729 -0.765959

14% -0.695377 -0.706243 -0.760018 -0.659897 -0.756154

15% -0.665054 -0.677629 -0.737292 -0.631092 -0.741744

20% -0.630705 -0.643865 -0.708544 -0.597312 -0.759030

25% -0.597631 -0.612905 -0.686275 -0.548669 -0.702058

30% -0.565641 -0.584952 -0.666811 -0.493476 -0.750499

35% -0.536420 -0.560730 -0.652261 -0.458648 -0.702436

40% -0.517770 -0.547288 -0.642082 -0.446062 -0.695310

45% -0.509191 -0.547264 -0.637989 -0.452451 -0.582652

50% -0.512050 -0.558067 -0.644999 -0.469800 -0.403287  
 

Table 4: Overall results Correlation Coefficient Change (r-squared value) for errors generated with random 

generation method II 
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Figure 4: Overall Results Method II 
 

DISCUSSION OF RESULTS 
There are many aspects of our test results to comment on. First, it does not appear to significantly change 

the resulting distribution of slope values or correlation coefficients regardless of which of the two random 

error generating methods were used. Second, it appears that Methods I and II, slope and change in slope 

respectively, do not yield quantifiable results. For example, looking at the results in Appendix A, Table 5, 

one notices that while the slope changes at a predictable rate based on percentage of erroneous data, at 45% 

inaccurate data the slope itself is very close to the Gold Standard slope. Difference between slope and gold 

standard slope also do not contain predictable measurements that are useful for our purposes.  

 

The third method, change in correlation coefficient, or r-squared value, however does yield predictable and 

useful measurements for determining the level of inaccuracies in the data set. We can see from Tables 3 

and 4, and Figures 3 and 4, that the correlation coefficient gets farther away from a line (farther from -1 or 

1) as the amount of inaccurate data increases. Furthermore, in all but data set E the correlation coefficient 

values are even similar among the various data sets. These are promising results for many reasons. The 

slope of the line does change as the amount of inaccurate data increases, however one need not know the 

original slope of the line to determine the amount of inaccuracy. Instead, if the data is hypothesized to be a 

power law distribution, it can be plotted and fitted to a line regardless of the slope and an estimate of the 

level of inaccuracies within the data set can be made.  

 

The gradual nature of the change in the correlation coefficient also suggests that the change could be fitted 

to a defined correlation between level of inaccuracy and coefficient value so that estimations of the quality 

of the set could be made. It is too early in our research to strictly define this, but it is interesting that this 

type of data appears to follow a steady decline as opposed to other sets that have a severe deterioration of 

distribution with even small amounts of inaccuracies as we have seen in other work [8]. In most instances 

the data sets remain within a 0.8 r-squared value until around 12% inaccurate data. This is very 

encouraging for the creation of a robust inaccuracy estimator. 
 

 

 



 

CONCLUSIONS AND FUTURE WORK 
This research is still in its early phases. Ultimately the authors would like to test approximately twenty data 

sets and determine if a definite correlation between r–squared value and level of inaccuracy does indeed 

exist, and if so to define this. There is also a fourth method that may be promising but that we have not 

tested that would allow us to determine if there as been an error in one particular data count. If only one 

value has a perceived error we could account for this by determining if its rank or count changes 

dramatically over the course of some time period. If there is a dramatic increase this could be flagged and 

analyzed further. Finally, use of the new methods of Clauset et al [1] and the determination of methods for 

determining errors using their algorithms could be investigated. Overall, the authors are encouraged by 

these initial results and will pursue this avenue of research further as many data sets may conform to a 

power law distribution. 
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Appendix A Individual Results 



 

Percent Corrupt Slope r squared value Distance from Gold Standard Slope

Gold Standard (0%) -1.113275 -0.988579 0

1% -1.330470 -0.977787 0.217195

2% -1.658394 -0.958271 0.545119
3% -2.025777 -0.946614 0.912502
4% -2.383607 -0.937757 1.270332

5% -2.706081 -0.926703 1.592806

6% -2.969563 -0.911636 1.856288

7% -3.157777 -0.892204 2.044502

8% -3.266302 -0.870329 2.153027
9% -3.252679 -0.857065 2.139403

10% -3.192771 -0.837566 2.079495

11% -3.085507 -0.814163 1.972231

12% -2.947045 -0.788848 1.833770

13% -2.783619 -0.762256 1.670344

14% -2.598766 -0.733374 1.485491
15% -2.410874 -0.706243 1.297599
20% -2.173447 -0.673616 1.060172

25% -1.912633 -0.638245 0.799358

30% -1.661293 -0.606023 0.548018

35% -1.484651 -0.612337 0.371376
40% -1.298752 -0.614250 0.185476
45% -1.184591 -0.636806 0.071315

50% -1.091816 -0.667539 -0.021460  
Table 5: Data Set A Tabular Results 

 

Percent Corrupt Slope r squared value Distance from Gold Standard Slope

Gold Standard (0%) -1.069828 -0.992570 0.000000

1% -1.239464 -0.977897 -0.169636

2% -1.497125 -0.960423 -0.427297

3% -1.796500 -0.948668 -0.726672

4% -2.099655 -0.939553 -1.029827

5% -2.367906 -0.928075 -1.298078

6% -2.580713 -0.913613 -1.510885

7% -2.732337 -0.895342 -1.662509

8% -2.823911 -0.872613 -1.754083

9% -2.853433 -0.847017 -1.783605

10% -2.825839 -0.819033 -1.756011

11% -2.751598 -0.790224 -1.681770

12% -2.636783 -0.760147 -1.566955

13% -2.497380 -0.729522 -1.427552

14% -2.340690 -0.700011 -1.270862

15% -2.172721 -0.670777 -1.102893

20% -1.955555 -0.641851 -0.885727

25% -1.735631 -0.615828 -0.665803

30% -1.514631 -0.587774 -0.444803

35% -1.299938 -0.567309 -0.230110

40% -1.106034 -0.552448 -0.036206

45% -0.964522 -0.551619 0.105306

50% -0.863613 -0.559030 0.206215  
Table 6: Data Set B, Tabular Results 

 



 

Percent Corrupt Slope r squared value Distance from Gold Standard Slope

Gold Standard (0%) -0.852299 -0.994842 0.000000
1% -0.920012 -0.997266 -0.067713
2% -1.042925 -0.993554 -0.190626
3% -1.168022 -0.987005 -0.315723
4% -1.315955 -0.975075 -0.463656
5% -1.447085 -0.962358 -0.594786
6% -1.564527 -0.945028 -0.712228
7% -1.640417 -0.926630 -0.788118

8% -1.690200 -0.903462 -0.837901
9% -1.700633 -0.879958 -0.848334

10% -1.691585 -0.853686 -0.839286
11% -1.655821 -0.832537 -0.803522
12% -1.595099 -0.810317 -0.742800

13% -1.524150 -0.785785 -0.671851
14% -1.446234 -0.759144 -0.593935
15% -1.368551 -0.738759 -0.516252
20% -1.267139 -0.714443 -0.414840
25% -1.151323 -0.689070 -0.299024

30% -1.045189 -0.663526 -0.192890
35% -0.927194 -0.638208 -0.074895
40% -0.819479 -0.624336 0.032820
45% -0.755504 -0.621493 0.096795
50% -0.712343 -0.634528 0.139956  

Table 7: Data Set C, Tabular Results 

 
Percent Corrupt Slope r squared value Distance from Gold Standard Slope

Gold Standard (0%) -2.497718 -0.987608 0.000000

1% -2.678983 -0.992400 -0.181265

2% -2.936413 -0.990630 -0.438695

3% -3.289699 -0.981541 -0.791981

4% -3.640914 -0.966808 -1.143196

5% -3.961571 -0.945712 -1.463853

6% -4.167570 -0.925201 -1.669852

7% -4.306592 -0.902501 -1.808874

8% -4.379137 -0.873514 -1.881419

9% -4.370368 -0.839687 -1.872650

10% -4.260689 -0.806561 -1.762971

11% -4.073511 -0.766355 -1.575793

12% -3.841621 -0.726180 -1.343903

13% -3.599693 -0.692132 -1.101975

14% -3.311202 -0.660768 -0.813484

15% -2.988006 -0.621011 -0.490288

20% -2.681185 -0.587464 -0.183467

25% -2.341687 -0.548562 0.156031

30% -1.927895 -0.509061 0.569823

35% -1.602143 -0.480668 0.895575

40% -1.346614 -0.467117 1.151104

45% -1.111651 -0.466787 1.386067

50% -1.023600 -0.502952 1.474118  
Table 8: Data Set D, Tabular Results 



 

 Percent Corrupt Slope r squared value Distance from Gold Standard Slope

Gold Standard (0%) -3.170003905 -0.939689 0.000000

1% -3.170003905 -0.939689 0.000000

2% -3.170003905 -0.939689 0.000000
3% -3.170003905 -0.939689 0.000000

4% -3.170003905 -0.939689 0.000000
5% -3.196891387 -0.916498 -0.026887
6% -3.166925523 -0.912175 0.003078
7% -3.187790214 -0.905218 -0.017786

8% -3.028894425 -0.884737 0.141109
9% -3.025066111 -0.884299 0.144938

10% -3.036999758 -0.872218 0.133004

11% -2.80998711 -0.809960 0.360017

12% -2.677691993 -0.761718 0.492312
13% -2.667245636 -0.751060 0.502758

14% -2.653013085 -0.740559 0.516991

15% -2.634523768 -0.745369 0.535480
20% -2.668712705 -0.774571 0.501291
25% -2.089574955 -0.712225 1.080429

30% -2.046534647 -0.714426 1.123469
35% -1.84755318 -0.767803 1.322451
40% -1.263565195 -0.753158 1.906439

45% -1.015029791 -0.776767 2.154974
50% -1.121950978 -0.712290 2.048053  

Table 9: Data Set E, Tabular Results 

 

Appendix B 
Sample Perl scripts. For more source code contact the authors. This was compiled under Perl 5.10.1.  
#Chris Nuhn & Doc Sessions 
#6:00 PM 02/16/2010 
#Zipf's Powerlaw v3.2 
 
#################################### 
#  ARGS     # 
#################################### 
# 1. String  File     # 
# 2. Boolean  Create .xls    # 
# 3. Boolean Print     # 
#################################### 
 
if ($#ARGV >= 2) {$print = $ARGV[2];} 
if ($#ARGV >= 1) {$xls = $ARGV[1];} 
if ($#ARGV >= 0) {$file = $ARGV[0]; $error = "$file not found\n";} 
if ($#ARGV <  0) {$error = "file not given\n";} 
 
open (IN, $file) or die $error; 
$rank = 0; 
foreach (<IN>) 
{ 
 chomp $_; 
 next unless $_ =~ m/\t*(\d+)\t*/; 
 $y[$rank] = $1; 
 $rank++; 
} 
 



 

@y = sort {$b <=> $a} @y; 
 
$rank = 0; 
foreach (@y) 
{ 
 $logy[$rank] = log10($_); 
 $rank++; 
} 
 
foreach (1..($#y+1))  
{ 
 $x[$_ - 1] = $_; 
 $logx[$_ - 1] = log10($_); 
} 
 
correlation(\@logx, \@logy, $print); 
if($xls) {toxls();} 
 
########################################## 
#  SUBRUTINES   # 
########################################## 
sub mean 
{ 
 my ($ref_) = @_; 
 my $size = @{$ref_}; 
 my $mean = 0; 
 foreach (@{$ref_}) 
 { 
  $mean += $_; 
 } 
 return ($mean / $size); 
} 
 
sub toxls() 
{ 
 ($first, $extension) = split /\./, $file; 
 open( OUT, ">$first"."log.xls"); 
 foreach (0..$#y) 
 { 
  print OUT $x[$_], "\t", $y[$_], "\t", $logx[$_], "\t", $logy[$_], "\n"; 
 } 
 print "$first"."log.xls created\n"; 
} 
 
sub sd 
{ 
 my ($ref_) = @_; 
 my $size = @{$ref_}; 
 my $mean = mean($ref_); 
 my $sqtotal = 0; 
 foreach (@{$ref_}) 
 { 



 

  $sqtotal += sqr($_ - $mean); 
 } 
 return sqrt($sqtotal / $size); 
} 
 
sub correlation 
{ 
 my ($ref_x, $ref_y, $print) = @_; 
 my $n = @{$ref_x}; 
 my $sdx = sd($ref_x); 
 my $sdy = sd($ref_y); 
 my $xbar = mean($ref_x); 
 my $ybar = mean($ref_x); 
 my $sum = 0; 
 foreach (0..($n - 1)) 
 { 
  $sum += ((@{$ref_x}[$_] - $xbar)*(@{$ref_y}[$_] - $ybar)); 
 } 
 my $corr = ($sum / (($n) * $sdx * $sdy)); 
 if($print) {print "Correlation:\nr: $corr\n";} 
 return $corr; 
} 
 
sub sqr 
{ 
 return (@_[0] * @_[0]); 
} 
 
sub log10 
{ 
 my ($num) = @_; 
 return (log($num) / log(10)) 
} 
 

 

 


