
A GENERAL RANKING STRATEGY FOR DATA 
ACCURACY MANAGEMENT 

(Research-in-Progress) 
 

Irit Askira Gelman  
DQIQ 

Askira@cox.net 
 
 

Abstract: A series of recent studies proposed a construct named damage and a set of models for estimating 
the damage in a chosen class of information systems. The perception that underlies the proposed construct 
is that, all other things being equal, it would be beneficial to assign priority to the elimination of data errors 
that have a stronger negative effect on output accuracy (i.e., output accuracy is lower) over data errors that 
have a weaker effect. In this paper we extend the work on damage by considering its use with information 
systems in general, rather than a specific class of information systems. Mainly, we propose a general 
strategy for ranking the inputs according to the damage that errors in each input inflict on the output of the 
system. A major advantage of this strategy is that it focuses the ranking effort on a subcomponent of the 
information system that can be substantially smaller and simpler than the information system as a whole.  
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INTRODUCTION 
The overall annual cost of poor data quality to businesses in the US has been estimated in the 
hundreds of billions of dollars (Eckerson 2002) and the overall cost to individual organizations is 
believed to be 10%-20% of their revenues (Redman 2004). However, these estimates are not 
impressive enough, apparently, to drive organizations to action. For instance, most organizations 
have no plans for improving data quality in the future (Eckerson 2002). In the face of this neglect, 
there is a mounting conviction among both practitioners and researchers that an understanding of 
the economic aspect of data quality can be crucial for convincing organizations to increase their 
data quality efforts. An understanding of the economics of data quality can guide decisions on 
how much to invest in the quality of their information and how to allocate limited organizational 
resources (Wang and Strong 1996).  

This paper is a product of a research project that addresses the need for models to support 
information quality resource allocation and design decisions. In particular, this research considers 
a key dimension of information quality, namely, accuracy (Wang and Strong 1996). Accuracy is 
defined as the degree to which the data or information are in conformance with the true values. 
Broadly, the questions that are of interest in this research project include, for instance:  

(1) Assuming an information system that utilizes a specified set of input sources for producing 
required information, how can we identify the input sources that would yield the highest gain in 
information accuracy if their accuracy is improved?  How can we identify the input sources that 
would offer the highest economic return if their accuracy is improved?  

(2) How can we quantify the gain in information accuracy that would result from improving the 
accuracy of a chosen data source, and the subsequent economic return?  

A series of studies (Askira Gelman 2009; Askira Gelman 2010; Askira Gelman Forthcoming) 
approached these questions by proposing a construct named damage, and a set of models for 
estimating the damage (Hevner et al. 2004; March and Smith 1995). The perception that underlies 
the proposed construct is that, all other things being equal, it would be beneficial to assign 
priority to the elimination of input errors that have a stronger negative effect on output accuracy 
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(i.e., output accuracy is lower) over input errors that have a weaker effect. In practical settings 
where, often, not all other things are equal, an estimate of the damage should be weighed by, or 
combined with, values of other relevant factors (e.g., the cost of higher accuracy), in order to 
yield a more comprehensive evaluation of an investment in the accuracy of a chosen input.  

Work on the new concept of damage has focused, so far, on a single class of information systems. 
Systems in that class employ binary, multi-criteria decision or judgment rules that consist of 
conjunction and disjunction operations. Instances of such systems include databases, expert 
systems that utilize domain knowledge in the form of multi-criteria satisficing decision rules, and 
classification models that use decision trees for their purpose. (Askira Gelman 2009; Askira 
Gelman 2010), in particular, developed and evaluated a simple model for ranking the inputs of 
multi-criteria satisficing decision rules according to the damage that errors in each inflict. Askira 
Gelman (forthcoming) developed and evaluated a broad model for quantifying the damage in 
similar applications.  

In this paper we extend the work on damage by considering its use with information systems in 
general rather than a specific class of information systems. Mainly, we propose a general strategy 
for ranking the inputs of an information system according to the damage that errors in each input 
inflict on the output of the information system. A major advantage of that strategy is that it 
focuses the ranking effort on a subcomponent of the information system that can be substantially 
smaller and simpler than the information system as a whole.  

The next section provides a summary of relevant literature. Later, the section “Damage and 
Damage Ranking” defines the notion of damage and briefly discusses the potential value of a 
ranking of damage. The section “Theoretical Foundation of the Damage Ranking Strategy” 
introduces the theoretical basis that serves the proposed strategy.  Finally, the section 
“Illustration: Application of the Ranking Strategy” demonstrates the application of the theory, 
and subsequent ranking strategy, in the case of information systems that employ satisficing 
decision rules as described above.  
    

RELATED RESEARCH  
An implicit assumption of this inquiry is that errors can be differentiated based on the intended 
use of the data. Counter to an approach that does not differentiate between errors (e.g., Janson, 
1988; Parsaye and Chignel, 1993), an approach that differentiates between errors based on the 
intended use of the data is consistent with the currently accepted definition of data quality as 
“fitness for use.” The concept of fitness for use emphasizes the context of the data, mainly the 
uses, users, and suppliers of the data (Juran, 1988).  

A recent work that somewhat resembles the viewpoint that underlies our research introduces a 
data quality assessment method for database settings that accounts for variations in the potential 
utility of the data (Even and Shankaranarayan, 2007). In general, nowadays there are various 
tools and methods that guide the design from a data utilization perspective. For instance, Ballou 
and Pazer (Ballou and Pazer, 1985) belong in this class. They propose a framework for tracking 
numeric data errors through an information system to assist with estimating the impact of errors 
on the output. Notably, (Ballou et al. 1998) and several other studies (e.g., Shankaranarayan, 
Zaid, and Wang, 2003) have extended the model of Ballou and Pazer in several directions.  

A few frameworks address the relationship between the quality of the raw data and the quality of 
the output of a relational database query. Parssian et al. (2004) assess the relationship between the 
quality of the data and the quality of the output of a query. The quality dimensions of interest in 
that study are completeness, accuracy, and membership. Motro and Rakov (1997) describe a data 
analysis method that identifies data subsets which are homogeneous in their soundness or 
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completeness. They employ aggregates of the data quality estimates that their method generates 
to assess the quality of query answers. Additional instances of work that accounts for the 
relationship between the quality of raw data and the quality of the output of queries include 
(Wang, Reddy, and Kon, 1995; Naumann et al., 1999; Avenali et al., 2008).  

The contribution of our work on the concept of damage beyond previous work on the relationship 
between input accuracy and output accuracy lies in the special emphasis of this concept. The 
notion of damage is designed to assist in prioritization and resource allocation tasks in data 
quality management. As explained earlier, this paper, in particular, extends the work on damage 
to information systems at large.  

Prioritization of data quality issues according to users’ perceptions and needs is assisted by 
several methods and tools (e.g., Wang and Strong, 1996; Lee, Strong, Kahn, and Wang, 2002). 
Some tools are available today that assist directly with prioritization and resource allocation in 
data quality management settings (e.g. Ballou and Pazer, 1989). However, the relationship 
between input accuracy and output accuracy is neglected by these tools.  

 
DAMAGE AND DAMAGE RANKING  
The notion of damage is a central concept of this research. The damage that errors in an input 
inflict on output accuracy is defined as the change in output accuracy due to a change in the 
accuracy of that input. The idea that motivates this construct is that, all other things being equal, it 
would be beneficial to assign priority to the improvement of the accuracy of an input where 
accuracy deficiencies have a higher negative effect on output accuracy over an input where 
accuracy deficiencies have a less negative effect. For instance, assume that accuracy is measured 
by error rate. Suppose that, by decreasing the error rate in one of the information system’s inputs 
by 1%, we decrease the error rate of the system’s primary output by 0.5%, while a decrease in the 
error rate of a second input by 1% decreases the output error rate by 0.05%. Obviously, all other 
things being equal, it would be more effective to decrease the error rate of the first input than the 
second.  

Technically, we view an information system as a function (e.g., Hamilton and Zeldin 1978; Wand 
and Weber, 1990). Likewise, we view the accuracy of the output of an information system as a 
function, such that input accuracy is one of its arguments. In general, input accuracy is not the 
only determinant of output accuracy. The nature of the process, processing errors, the correct 
input values, dependencies between processing errors and the correct input values, dependencies 
between input errors, dependencies between input errors and the correct input values, and 
dependencies between correct values, are important as well (Ballou and Pazer 1985; Askira 
Gelman 2004; Fisher et al. 2009). In the illustrative example of this paper, the accuracy of the 
output is derived analytically as a function of several such arguments. However, in the general 
case, determination of such a function is difficult at best. Practically, as we can see from the 
discussion below, the details of this function are not an absolute pre-requisite of our approach.  

Definition (Damage): Let  and  denote the accuracy of input v and output o, respectively, 

of an information system s. The damage of errors in v to the accuracy of o, denoted by 

va Oa
Oa∂

Oa

va∂
, is 

the change in the accuracy of o due to a change in the accuracy of v when all other arguments of 
 are held fixed.  
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Our definition of damage avoids the use of a specific measure of accuracy. This choice is 
consistent with the intended generality of the proposed approach, i.e., the proposed strategy is 
independent of the preferred measure of accuracy.  

An estimate of damage can be produced empirically, analytically, or through another 
computational method. An analytical method would derive the damage as a function of a set of 
pre-specified parameters. An empirical strategy can produce estimates of damage values through 
simulation of the information system. Alternatively, we can manipulate the accuracy of the inputs 
of an actual system, e.g., by adding input errors and monitoring the change in the accuracy of the 
system’s output. A potential advantage of an approach that utilizes an existing system is that it 
can avoid the need to study many of the specifics of the accuracy function. However, an 
investigation of error distributions or dependency patterns is recommended before adding input 
errors, since such dependencies can affect the outcome. Clearly, estimates as described here can 
be prohibitively costly or practically impossible, especially when the information system is large 
or complex.  

Rather than focus on a full-fledged damage estimate, this paper considers a ranking of the 
damage, i.e., an ordering of the inputs by the damage that the respective input errors inflict. A 
disadvantage of a ranking compared to a full-fledged quantitative measure is that a ranking may 
not enable a comprehensive assessment, i.e., an assessment that accounts for the damage as well 
as other relevant factors. We argue, on the other hand, that the damage ranking of two inputs can 
be useful per se, and, in addition, it may be obtained significantly more easily than quantitative 
damage values. Notably, the emphasis of this work is on relative ease and simplicity.  

 
THEORETICAL FOUNDATION OF THE DAMAGE RANKING 
STRATEGY  
The process of ranking a set of inputs of an information system with respect to the damage that 
the errors in each input inflict on an output can be viewed as a sequence of repeated ranking 
activities, each involving a single pair of inputs. Therefore, when discussing our ranking strategy, 
we can limit the discussion to a single input pair. We will denote the respective inputs  and iv jv . 
Subsequently, the problem of interest here is how to easily rank inputs  and iv jv  of an 
information system s according to the damage that each generates to an output o of s.  

 
Notation Explanation 

s an information system; technically, s is a function 

's  an information system that is a component of s; 
technically, we employ function composition  
 

v, ,  iv jv inputs of s  
 

o,  'o an output of  s , 's , respectively 

va , , , ,  v
ia v

ja Oa 'Oa accuracy; the superscripts and subscripts describe 
the relevant variable, e.g.,  denotes the 
accuracy of  

v
ia

iv

Table 1: Symbols in use in the presentation of the theoretical foundation  
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In essence, the proposed damage ranking strategy is based on the understanding that, given  
and 

iv
jv  as above, their ranking is often independent of a large share of s, i.e., it is determined by 

' , a sub-component of s, which can be much smaller and simpler than s. Hence, our ranking 
strategy aims to identify such a minimal sub-component  and focus the ranking efforts on that 
component. Assumably, the process of ranking the damage to , the output of ' , would be 
simpler and less costly than the process of ranking the damage to o, the output of s. The 
remaining part of this section establishes the theory that underlies the proposed strategy, while a 
following section will illustrate the application of the theory and subsequent ranking strategy.  

s
's

'o s

The understanding that the ranking of two inputs is often independent of much of the system is 
derived from the observation that information systems are typically modular. Modular design has 
been advocated throughout the history of software, and is supported by numerous ideas, methods, 
tools, and products. Common software development terminology such as subroutines, modular 
programming, object oriented programming, component-based software development, service 
oriented architecture, and numerous other popular concepts, reflect various interpretations of the 
principle of modularity that have evolved over the years. Accordingly, Assumption 1 states that 

 and iv jv  are inputs of ' , a subsystem of s, such that the damage of errors in the recorded value 
of  (/

s
iv jv ) to the accuracy of output o of s is equal to the product of the damage of errors in the 

recorded values of  (/iv jv ) to the accuracy of output of and the damage of errors in the 
computed values of  to the accuracy of o. 

'o 's
'o

Assumption 1 (Decomposability):  Let s denote an information system. Let  and iv jv  denote 
two inputs of s. Then, there exists an information system ' such that '  is a component of s,  
and 

s s iv
jv 's 'o 's

v

 are inputs of  and  is an output of , and the following conditions hold true. Let 

, ia v
ja , , , denote the accuracy of , 'Oa Oa iv jv , , and o, respectively. Let 'o

O

v
j

a∂
a∂

,
Oa∂
v
ia∂

, 
'

O

O

a
a
∂
∂

, 

'O

v
j

a
a

∂
∂

,
'Oa∂

v
ia∂

, denote the damage of errors in jv  to the accuracy of output o, the damage of errors 

in  to the accuracy of o, the damage of errors in to the accuracy of o, the damage of errors in iv 'o
jv ' ' to the accuracy of , and the damage of errors in  to the accuracy of o , respectively. 

Then: 
o iv

O

v
i

a
a

∂
∂

=
'

'

O O

vO i

a a
a a
∂ ∂

⋅
∂ ∂

           (1) 

O

v
j

a
a

∂
∂

=
'

'

O O

vO j

a a
a a
∂ ∂

⋅
∂ ∂

           (2) 

Now, suppose that Assumption 1 holds true. Suppose also that the “smaller” problem of ranking 
the damage that errors in each of  and iv jv  inflict on output  of can be solved at a 
reasonable cost. (Again, such a solution may be empirical, analytical, etc.) In other words, we 

assume next that the problem of ranking inputs  and 

'o 's

iv jv  according to the size of  
'O

v
i

a
a

∂
∂

 and 
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'O

v
j

a
a

∂
∂

 has a feasible solution. Since such a solution would refer to ' , not to s, it would not 

automatically solve the ranking problem in the bigger system.  Mainly, there would still be a need 
to clarify the nature of the link between a ranking of the damage to  and the ranking of the 
damage to o. However, equations (1)-(2) imply that the link between a ranking of the damage to 

 and the ranking of the damage to o is captured by 

s

'o

'o
'

O

O

a
a
∂
∂

, which is the damage of errors in '  

to the accuracy of o. Hence, we need to understand this damage, mainly its sign. If the sign of 

o

'

O

O

a
a
∂
∂

 is positive, then, according to (1)-(2), the same ranking that holds true in  would also be 

valid in s. If that sign is negative then the former ranking would be reversed. We argue, however, 

that the sign of 

's

'

O

O

a
a
∂
∂

 is captured by the widespread belief in “Garbage In Garbage Out” (GIGO): 

a higher input accuracy produces a higher output accuracy. To the extent that this belief is valid, 
it informs us that the sign of the damage of errors in  to the accuracy of o is positive. 
Assumption 2 designates the belief in GIGO. 

'o

 

Assumption 2 (GIGO):  
'

0
O

O

a
a
∂

≥
∂

.       

 
Apart from a universal belief in GIGO among non-scientists, scientists have typically embraced 
the popular belief in GIGO and have treated GIGO as an axiom. Originally coined in the 
computer industry, this acronym, which indicates a strong positive link between input accuracy 
and output accuracy, is nowadays commonly accepted. Recently, however, there is a growing 
literature that suggests various conditions in which GIGO does not hold true. Notably, the 
illustrative example that we present in the next section has been associated with deviations from 
GIGO (Askira Gelman 2004, Askira Gelman 2007). Clearly, these deviations, as well as various 
related discoveries, prove that GIGO should not be taken to be true at all times. However, with 
this caveat in mind, we choose to utilize GIGO due to our conviction that GIGO is often enough 
valid, such that a strategy based on GIGO should not be discarded because of the deviations.  

We can conclude that, if Assumptions 1 and 2 hold true, a ranking of the damage to o is the same 
as the respective ranking of the damage to . Proposition 1 states that, when Assumption 1 and 
Assumption 2 hold true, if the damage of errors in 

'o
jv  to  is higher than the damage of errors in 

 to  then the damage of errors in 
'o

iv 'o jv to o is higher than the damage of errors in  to o.  iv

Proposition (Damage Ranking): Let  and iv jv  denote two inputs of s, consistent with 

Assumption 1 and Assumption 2. Then, 
' 'O O

v v
j i

a a
a a

∂ ∂
≥ ⇒

∂ ∂

O O

v v
j ia a

a a∂ ∂
≥

∂ ∂
.  

This proposition follows directly from Assumption 1 and Assumption 2.  

The conditions of the proposition are sufficient conditions—these are not necessary conditions. If, 
contrary to our stipulation, Assumption 1 does not hold true while Assumption 2 is true, or even 
if both Assumption 1 and Assumption 2 do not hold true, then a ranking of the damage to o can 
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still be the same as the ranking of the damage to . The following example refers to a situation 
in which, due to an inherent dependency that the information system generates between errors 
and the corresponding correct values, the decomposability assumption is only approximately true 
(i.e., the product on the right hand side of (1) and (2) is approximately equal to the matching left 
hand side). GIGO, however, held true under most of the conditions that we have studied. 
Interestingly, our tests have indicated that the accuracy of a ranking based on the subsystem that 
we have identified was very high, approaching perfection. In conclusion, from a practical 
perspective, if two inputs that require ranking are processed within a small, identifiable 
subsystem, it may be worthwhile to study their ranking in that subsystem even when the validity 
of Assumption 1 and Assumption 2 may be compromised. Future work will continue to explore 
this direction. 

'o

 
ILLUSTRATION: APPLICATION OF THE RANKING STRATEGY  
In essence, the proposed ranking strategy directs us to identify a minimal component of s that 
processes the inputs of interest, and center the ranking efforts on that component, . As long as 
the decomposability requirement and GIGO hold true, then a ranking of two inputs according to 
the damage to the output of '  is assured to be equal to their ranking in terms of the damage to 
the output of s.  

's

s

In this section we illustrate the application of our damage ranking theory through the example of 
a popular class of applications which consist of multi-criteria, conjunctive or disjunctive decision 
or judgment rules. Instances of such applications include databases, expert systems that utilize 
domain knowledge in the form of multi-criteria satisficing decision rules, and classification 
models that use decision rules for their purpose. 

Consider the following simple scenario, which centers on an organizational operational decision 
regarding a costly maintenance activity. Suppose that, in order to determine if a machine should 
or should not undergo this maintenance activity, decision makers employ a conjunctive decision 
rule which designates four decision variables: (1) the age of the machine, (2) its manufacturer, (3) 
its utilization status, and (4) its location. In particular, the maintenance decision applies the 
following criteria: (a) the machine is at least two years old and (b) the machine has been 
manufactured by ABC and (c) the machine is highly utilized (by some measure) and (d) the 
machine is kept in the east coast facility of the company in Massachusetts. As is often the case, 
the capital inventory database that serves this decision is not free of errors. Inaccurate age and 
manufacturer data are due to data entry errors or deficient communication among different 
organizational departments. Errors in data about machine utilization are mainly caused by delays 
in updating the data subsequent to utilization status changes. Errors in location data are often 
caused by delays in updating the data subsequent to equipment transfers from one facility to 
another. Obviously, errors in the data lead to errors in the classification of machines as passing, or 
not passing, the maintenance activity criteria. Assuming that the decision rule has been well 
chosen, both false negative and false positive decisions would be costly. False positive decisions 
should be avoided because of the high maintenance activity cost, while false negative decisions 
can lead to higher expected losses due to a higher rate of machine failures. Since errors in 
different decision inputs have, for the most part, different sources, an investment in the accuracy 
of one decision input would be largely separate from an investment in the accuracy of another 
decision input. To the degree that the decision makers have influence over the accuracy of the 
data, they can benefit from a tool that would rank the relevant attributes (manufacturing year, 
manufacturer, utilization status, and location) according to the damage that errors in each attribute 
inflict on the accuracy of the maintenance decision. Since resources (financial, human, etc.) are 
limited, a tool that assists in the identification of the inputs that would yield the highest gain in 
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decision accuracy can be useful.  

In this scenario, the system s comprises the conjunctive rule that combines all four decision 
criteria. We assume that s is error-free (i.e., no processing errors). Suppose, for instance, that we 
want to rank two inputs of this decision rule, namely, the manufacturer of the machine (denoted 
next by ) and its location (denoted next by iv jv ) according to their damage values. Our strategy 
advises us to find a minimal subsystem 's  that processes  and iv jv  and satisfies Assumption 1 
(decomposability) and Assumption 2 (GIGO). A natural candidate for  in this scenario is the 
binary conjunction operation that combines  and 

's
iv jv . In other words, instead of accounting for 

the entire decision rule s we aim to limit the ranking effort to 's , which designates the following 
binary conjunctive rule: the machine was manufactured by ABC and the machine is kept in 
Massachusetts.  

We have developed analytical models that assist in the ranking of two inputs of a binary 
conjunctive rule and a binary disjunctive rule (Askira Gelman, 2010). Next, we will briefly 
present such a model that handles a conjunctive rule, and adapt it to our running example. Later 
we will examine the validity of Assumption 1 and Assumption 2. 
   
Ranking Model 
Let  and iT jT  denote the outputs of testing each of  and iv jv , respectively, against the matching 
decision criterion. The possible outcomes of such a test are “false” (zero) and “true” (one). 
Specifically,  is tested against “ABC” to derive the value of  (e.g., if =ACM then =0, 
and if =ABC then =1) and 

iv iT iv iT
iv iT jv  is tested against “MA” to derive the value of jT . The values 

of  and iT jT  that are determined in this way are combined through a conjunction operation to 
generate the output of this component. Such an output, labeled  in agreement with our earlier 
convention, can be either zero (“false” or “reject”) or one (“true” or “accept”).  

'o

 
Notation Explanation 

iT  ,  jT the outputs of testing each of  and , 
respectively, against the matching decision 
criterion 

iv jv

v
iE , v

jE , ,T
iE T

jE , ' ,  OE OE dichotomous variables that inform about error 
occurrence; the superscripts and subscripts 
describe the relevant variables 

T
ia ,  T

ja accuracy; the superscripts and subscripts describe 
the relevant variables 

T
ip , T

jp  the probability that a given value satisfies the 
decision criterion on  , , respectively iv jv

in ,  jn the number of different values that , , 
respectively, accepts  

iv jv

im ,  jm the number of  different values of , , 
respectively, that meet the decision criterion 

iv jv

Table 2: New symbols in use by the illustration 
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While the above notation designates the correct inputs and outputs, an error in the recorded value 
is denoted by the letter E and a suitable superscript and/or subscript, e.g., v

iE  (the error in ), iv
T
iE (the error in ), iT 'OE , and so on. The variables T

iE , T
jE , 'OE , and OE are dichotomous 

variables, since their values inform us about the occurrence of an error in the recorded values of 
, iT jT , , and o (all of which are dichotomous variables themselves), respectively. A value of 

zero signifies that the recorded value of the variable is correct, while a value of one signifies that 
the value is incorrect. For instance, 

'o

T
iE =0 if the outcome of a test of the manufacturer is correct, 

and T
iE =1 if the outcome of that test is incorrect (i.e., it is “false” when it should be “true” or 

vice versa). In contrast, v
iE and v

jE  are not, in general, dichotomous. Since the data types of  

and 
iv

jv  can generally vary, a value of v
iE or v

jE may describe the occurrence of an error in a way 
that is similar to the former variables, or it may portray the error in a different way (e.g., show the 
magnitude of the error). In our scenario, however, since  and iv jv  are both categorical variables, 

v
iE and v

jE  are dichotomous variables similar to the other error variables.  

Accuracy (measure): The accuracy of the computed value of , , is measured by the 
probability of decision error. The accuracy of the recorded value of  (

'o 'Oa
iT jT ), denoted by  

(

T

T

ia
ja v), is measured, again, by the probability of error occurrence. Since  and i jv

va v

 are categorical 

variables,  and i ja  are similarly measured by the probability of error occurrence. 

Damage (measure): Our ranking model uses a partial derivative to implement the concept of 
damage. A derivative is a measure of the change in the output of a function when its input 
changes. A partial derivative is the derivative of a function of multiple variables when all but one 
variable of interest are held fixed. Therefore, it is consistent with the definition of damage.  

 

The damage of the errors in  to the accuracy of the observed value of  is calculated using 
(3):  

iv 'o

 

     

'
{Pr( 1| 1) Pr( 1| 1) 2Pr( 1| 1) 2Pr( 1| 1)

           2Pr( 1| 1)}

O
T T T T T T T

j i j i i j i j j iv
i

T
iT T

i j j i v
i

a T E E E T E E T E E
a

aT T E E
a

∂
= = = + = = − ⋅ = = − ⋅ = =

∂
∂

+ ⋅ ⋅ = = ⋅
∂

   (3) 

According to (3), the damage of errors in  to ' is a function of several parameters. Mainly, we 
note that the damage reflects the probabilities that the decision criteria are met on error-free 
inputs, the error probabilities when testing for these criteria, and also any statistical 
interdependencies among such events. In other words, it reflects characteristics of the error-free 
inputs, the process, and error characteristics, and also accounts for interdependencies. For 
instance, the term  is determined by the probability of error occurrence when 

testing for the decision criterion on , and the probability of its joint occurrence with the 
condition that the decision criterion on 

iv o

Pr( 1| 1)T
ijT E= =

iv
jv  is satisfied. In the absence of statistical dependencies 
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between these events, this term is simply the probability that the decision criterion on jv  is 
satisfied.  

The validity of (3), which applies to any two inputs that are combined by a conjunctive rule, 
follows directly from (Askira Gelman, 2010). (A formulation of the damage of errors in jv  is 
comparable to (3), given appropriate notation adjustment.) 

Now, suppose that the variables in { ,iv v
iE , jv , v

jE } are statistically independent. Suppose also 

that  accepts  different values (  is the number of different equipment manufacturers) and 
 of these values match the decision criterion. Since one manufacturer, “ABC,” is of special 

interest, =1. Similarly, suppose that 

iv in in
im

im jv  accepts jn  different values, jm of which satisfy the 
decision criterion. Again, jm =1 in our scenario. Let T

ip  ( T
jp ) denote the probability that a given 

value satisfies the decision criterion on  (iv jv ). Suppose that errors in the recorded values of  
and 

iv
jv  are uniformly distributed, such that the probability of incorrectly showing any of the other 

-1 (in jn -1) values is  (/( 1)v
i ia n − /( 1)v

j ja n − ) (assume that the system prevents us from 
entering values that are not included in the lists of recognized values). Under these assumptions, 
the damage formulation (3) can be re-written in terms of T

ip , T
jp , , in jn , v

ja , , and im jm :  

     

'
( 2 )/ ( 1)

           /(( 1)( 1)) {( 2 ) ( ) 2 ( ) ( )}

O
i T T T

j i i i i i iv
i

v T T T T T
j j i j j j j j i i i j j j i i i

p p p

p p p p p

a m n m n
a

a n n m n m m n n m m m

∂
= + ⋅ − ⋅ −

∂
+ − − ⋅ + ⋅ − ⋅ ⋅ − ⋅ − ⋅ ⋅ − ⋅ − ⋅

(4) 

Equation (4) shows that the damage depends on input accuracy, and in addition, it accounts for 
characteristics of the correct data and the nature of the process. In particular, it factors in the 
number of different values that each input accepts, the number of different values that satisfy the 
decision criterion, and, similarly, the probability that a given value meets the criterion.  

A proof of (4) is shown in the Appendix. Implementation of this damage ranking model is shortly 
discussed by (Askira Gelman, 2010); see also (Askira Gelman, forthcoming). Once the damage 
values for  and iv jv are known, they can be compared to determine the damage ranking.  

 

We now turn to the question of the validity of Assumption 1 and Assumption 2.  

Assumption 1 (Decomposability): When  is a single binary conjunctive (or disjunctive) 
operation and s is a multi-criteria rule such that  is a component of s, then the decomposability 
assumption is not satisfied in full. The right hand side of (1) and (2) is only approximately equal 
to the matching left hand side. This deviation is rooted in a statistical dependency that 
conjunction and disjunction operations generate between errors and the corresponding correct 
values (Askira Gelman, 2009b). For the purpose of the present paper we have conducted a 
numerical analysis in order to directly explore the deviation of equations (1) and (2) from the 
actual damage value. We studied conjunctive rules with up to five decision variables. In order to 
simplify the analysis, we centered onT ,

's
's

i jT , , and T
iE T

jE , which are statistically independent of 
each other, much like the corresponding parameters that describe the other inputs of the 
conjunctive rule. Our analysis accounted for values of T

ip , T
jp , and respective parameters of the 

other decision inputs which vary anywhere in the range 0.01-0.99. The values of ,Ta T
i ja , and 
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respective parameters of the other inputs varied in the range 0.01-0.10 (these values can match 
much higher fundamental error rates, i.e.,  and va v

i ja  can be substantially higher). The results 
showed that in over 70% of the cases the deviation of the actual damage values from the damage 
values calculated from (1)-(2) was less than 15%.  

Assumption 2 (GIGO): Earlier work has shown, both analytically and empirically, that, due to the 
nature of the conjunction and disjunction operations, GIGO does not always hold true in 
satisficing decision rules (Askira Gelman, 2007). That work has also characterized conditions in 
which GIGO is violated. Nonetheless, here we provide additional information on these 
conditions. Such information has been obtained through a series of Monte Carlo simulations that 
we have conducted as part of this study. These simulations examined the output of conjunction of 
two inputs. The simulations ignored the values of the decision variables  and iv jv since our 
earlier research had found such variables largely irrelevant for the phenomenon of interest. 
Instead, the simulation focused directly on  and iT jT  and the corresponding error terms,  and T

iE
T
jE . The values of these four variables were generated such that they assumed statistical 

independence, but covered a wide range of probabilities. The values of T
ip  and T

jp  varied from 

0.01 to 0.99 in increments of 0.01, and the values of  and T
ia T

ja  varied from 0.01 to 0.50 in 
increments of 0.01 (i.e., one simulation for each possible combination of the listed values of T

ip , 
T
jp , , and T

ia T
ja ). In essence, the chosen probability combinations established a sample of nearly 

all practical probability combinations. In order to determine the validity of GIGO, each 
simulation increased the value of each of  and T

ia T
ja , in turn, by 0.01, and compared the 

subsequent decision error rates to the base rate. The results of the simulations show a violation of 
GIGO in roughly 9% of the simulations. However, just about 1.5% of the simulations in which 

 and T
ia T

ja were limited to a maximum of 0.10 violated GIGO. From a practical perspective, the 
latter result is probably more meaningful than the result that shows a 9% deviation from GIGO. 
The reason is, again, that the upper boundary on  and T

ia T
ja typically corresponds to a much 

higher boundary on the fundamental input error rates,  and v
ia v

ja . Therefore, a boundary of 0.1 
probably covers realistic data error rates.  

In conclusion, although Assumption 1 and Assumption 2 are not fully satisfied in this scenario, 
these assumptions seem to offer useful approximations of the actual conditions. Our research has 
demonstrated that the damage ranking model (3) provided highly accurate predictions of the 
actual damage ranking, up to 99% of the tested instances (Askira Gelman, 2009). A major 
advantage of this model is that, regardless of the size of the decision rule, the model employs 
parameters of two inputs only. Hence, this model simplifies the damage ranking task.  
 

CONCLUDING REMARKS  
In this paper we propose a broad strategy for ranking the inputs of an information system 
according to the damage that errors in each input inflict on the output of the information system. 
Two important elements of this strategy are the notion of damage and the associated idea of 
employing damage ranking in data management decision making. A major potential advantage of 
this strategy is its relative simplicity. 

Future studies should continue to explore the practical usefulness of this approach. The value of 
this strategy should be empirically assessed through feasibility and implementation studies. Can 
small subcomponents such as we have delineated be easily identified? To what extent are 
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Assumption 1 and Assumption 2 valid? How critical are they for the proposed strategy? What is 
the amount of effort that is required in order to produce the ranking given that Assumption 1 and 
Assumption 2 can be taken to be valid in a chosen setting? These questions will have to be 
addressed through future work. Obviously, although the illustrative example that we have 
presented included an analytical model of the damage, such a model is not a necessary condition 
for this approach to succeed in general. An assessment of the damage can be carried out in 
various ways. The benefit that this work promises, i.e., that the ranking task will be simplified 
through a focus on a smaller subsystem, can be obtained regardless of the former choice.  
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APPENDIX  
 
Proof of Equation (4):   
1.     The probability that a value of jv  will incorrectly fail the decision criterion is given by        

. Pr( 1) ( ) /( 1)vT T
j j j j j j jpT E a n m n⋅ = = ⋅ ⋅ − −

2.     Under the assumed conditions we see that:  
T
ja =  {(1 ) ( )}/( 1) ( 2 )/( 1)v vT T T T

j j j j j j j j j j j j j jp p p pa m n m n a m n m n⋅ − ⋅ + ⋅ − − = ⋅ + ⋅ − −
3.     The conditional probability that the value of  satisfies the decision criterion given a 
classification error, is : 

iv

Pr( 1| 1) ( ) /( 2 )T T T T
i i i i i i i i ip pT E n m m n m= = = ⋅ − + ⋅ − ip  

4.     Similar to T
ja , we see that  is given by: 

= =

T
ia

T
ia {(1 ) ( )}/ ( 1)v T T

i i i i i i ip pa m n m n⋅ − ⋅ + ⋅ − − ( 2 )/(v T T
i i i i i i ip pa m n m n 1)⋅ + ⋅ − − . Therefore, 

T
i

v
i

a
a
∂
∂

=  ( 2 ) / (T T
i i i i i ip pm n m n+ − −1)

5.      Equation (3) states that: 
'

{Pr( 1| 1) Pr( 1| 1) 2Pr( 1| 1) 2Pr( 1| 1)

2Pr( 1| 1)}

O
T T T T T T T

j i j i i j i j j iv
i

T
iT T

i j j i v
i

a T E E E T E E T E E
a

aT T E E
a

∂
= = = + = = − ⋅ = = − ⋅ = =

∂
∂

+ ⋅ ⋅ = = ⋅
∂

 

Therefore, under our independence assumptions: 
'

{ 2 Pr( 1| 1) 2Pr( 1) 2Pr( 1| 1) Pr( 1)}
O T
i iT T T T T T T

j j j i i j j i i j jv v
i i

p
a aa a T E T E T E T E
a a
∂ ∂

= + − ⋅ = = − ⋅ = + = = ⋅ ⋅ = ⋅
∂ ∂

 

 
We now insert (1)-(4) in (5), and simplify, to get: 

'
[ { / ( 1)} {( 2 ) (1 2 ( ) /( 2 )

2 ( )(1 ( ) /( 2 ))}] ( 2 ) / ( 1)
( 2 ) / ( 1) /(

O
i vT T T T T )T

j j j j j j j j i i i i i i i iv
i

T T T T T T
j j j i i i i i i i i i i i i i i

vT T T
j i i i i i i j

p p p p p

p p p p p p

p p p

a a n m n m n m m n m
a

n m n m n m m m n m n
m n m n a

∂
= + − ⋅ + ⋅ − ⋅ ⋅ − ⋅ ⋅ − + ⋅ − ⋅

∂
− ⋅ ⋅ − − ⋅ − ⋅ + − ⋅ ⋅ + ⋅ − ⋅ − =

+ ⋅ − ⋅ − + ( 1)( 1)) {( 2 ) ( )
2 ( ) ( )}

T T T
j i j j j j j i i i

T T
j j j i i i

p p p

p p

n n m n m m n
n m m m

− − ⋅ + ⋅ − ⋅ ⋅ − ⋅

− ⋅ ⋅ − ⋅ − ⋅

p

 

End of proof.  
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