Mukesh Mohania November 19, 2011

IBM

© 2010 IBM Corporation

Outline

- Cloud Computing and Hadoop Architecture
 - Cloud Applications
 - Service Models
 - Hadoop and MapReduce Architecture
 - Data Flow in Hadoop
- → Data Cleansing Dimensions
- → Enhancing Data Quality with Web Data

Trend: New "Big Data" becoming commonplace

Transactions: 46 Terabytes per year

Call Records: 3 Terabytes per day

Growth Late of EMBL-Bank

Genomes: Petabytes per year

LHC: 40 Terabytes per second

10 Terabytes per day

7 Terabytes per day

Google 20 Petabytes per day

New Video Uploads: 4.5 Terabytes per day

Massive Volumes of Data at Rest and in Motion.....

Applications

- Data Integration Services
- Product Data Enrichment
- Insurance: Pay as you drive
- → Currency Life Cycle
- Product Verification Services
- Address Completion and Validation
- Bringing Social Network Data in DWH
- Many many more …

What is Cloud Computing?

- It is an emerging style of computing in which applications, data and IT resources are provided to users as services delivered over the network
- It enables self-service, economies of scale and flexible sourcing options
- "Cloud" refers to large Internet services like Google, Yahoo, IBM, etc that run on 10,000's of machines

Cloud Computing Essential Characteristics

- ✓ On-demand self-service
- Broad network access
- ✓ Resource pooling
- Rapid elasticity
- Measured service

What Exactly Is Apache Hadoop ?

- A framework for running applications (aka jobs) on large clusters built on commodity hardware capable of processing peta bytes of data.
- A framework that transparently provides applications both reliability and data motion. It ensures **data locality**.
- It implements a computational paradigm named Map/Reduce, where the application is divided into self contained units of work, each of which may be executed or re-executed on any node in the cluster.
- It provides a distributed file system (HDFS) that stores data on the compute nodes, providing very high aggregate bandwidth across the cluster. HDFS is a massively distributed file system designed to run on cheap commodity hardware.
- Node failures are automatically handled by the framework.

Hadoop Components

Distributed file system (HDFS)

- Single namespace for entire cluster stores metadata (file names, block locations, etc)
- Each file is chopped up into a number of blocks (128MB)
- Fault tolerance is achieved by replicating these data blocks over a number of nodes (replicates data 3x for fault-tolerance)
- Optimized for large files, sequential reads
- Files are append-only

MapReduce framework

- Simple data-parallel programming model designed for scalability, work distribution and fault-tolerance
- Executes user jobs specified as "map" and "reduce" functions
- Pioneered by Google, processing 20 petabytes of data per day
- Popularized by open-source Hadoop project
- Used at Yahoo!, Facebook, Amazon, ...

Dataflow in Hadoop

Dataflow in Hadoop

< 🔶 🕹 K 🗲

Dataflow in Hadoop

< ^ K <

Dataflow in Hadoop

Takeaways

By providing a data-parallel programming model, MapReduce can control job execution in useful ways:

- Automatic division of job into tasks
- Automatic placement of computation near data
- Automatic load balancing
- Recovery from failures & stragglers

User focuses on application, not on complexities of distributed computing

Customer Entity Cleansing

Need for Data Quality

Critical Problems

- Need to create & maintain 360 degree views of customers, suppliers, products, locations, events
- Need to leverage data make reliable decisions, comply with regulations, meet service agreements

Why?

- No common standards across organization
- Unexpected values stored in fields
- → Required information buried in free-form fields
- → Fields evolve used for multiple purposes
- No reliable keys for consolidated views
- Operational data degrades 2% per month

Approach

Data Cleansing

Data Cleansing Steps

Standardize "Fway" and "Bldg" to *Freeway* and *Building* and area names like "J Carpenter" to *John Carpenter*

Matching -- What Constitutes a Good Match?

Which of the following record pairs is a match? And how do you know?

W W		HOLDE HOLDE	IN I	<mark>12 м</mark> 12 м	AIN S AINE S	T T						
	W W	HOLD	EN EN	128 128	MAIN MAINE	PL PL	02111 02110	12/8/ 12/8/	<mark>62</mark> 62			
		WM WILL	HOL	DEN DEN	128A 128A	MAIN MAIN	E SQ	02111 02110	12/8 12/8	8/62 8/62	338-0824 338-0824	

- ú Do you compare all the shared or common fields?
- ú Do you give partial credit?
- ú Are some fields (or some values) more important to you than others? Why?
- ú Do more fields increase your confidence?
- ú By how much? What is enough?

Proceedings of the 16th International Conference on Information Quality (ICIQ-11)

Two Methods to Decide a Match

Are these two records a match?

WILLIAM	J	HOLDEN	128	MAIN	ST	02111	12/8/62	2	
WILLAIM	JOHN	HOLDEN	128	MAINE	AVE	02110	12/8/62	2	
В	в	A	A	в	D	в	A	=	BBAABDBA
+5 -	+2	+20	+3	+4	-1	+7	+9	=	+49

Deterministic Decisions Tables:

- Fields are compared
- Letter grade assigned
- Combined letter grades are compared to a vendor delivered file
- Result: Match; Fail; Suspect

Probabilistic Record Linkage:

- · Fields are evaluated for degree-of-match
- Weight assigned: represents the "information content" by value
- Weights are summed to derived a total score
- Result: Statistical probability of a match

Enhancing Data Quality Using Enterprise/Web Data

Product Standardization

→ Extract and standardize product attributes from product descriptions

Product Descriptions: CANNON CLS T220 SHT SET HAMPTON PLAID F Fisher-Price Look & Learn Binocular Gift Set – Rainforest Life FP34

Attribute Extraction and Attribute Standardization

K <

International Association for Information & Data Quality

International Association for Information and Data Quality

Advancing the information and data quality profession and its body of knowledge

2

Key products

- Professional certification
- Conference (USA)
- Conference support: EU, Americas, Asia, AU

NEWSLETTE

PUBLICATIONS

igid

3

4

- Quarterly newsletter
- Industry reports
- Webinars
- Monthly update

© IAIDQ

inida International Association for Information & Data Quality

Find us at

iaidq.org