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Part 1 — Introduction to Clouds
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1.1 What is a Cloud?

* Clouds provide on-demand resources or
services over a network, often the Internet,
with the scale and reliability of a data center.

= No standard definition.
= Cloud architectures are not new.

= What is new:
— Scale
— Ease of use
— Pricing model.

Scale is new.
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Elastic, Usage Based Pricing Is New

’ costs the same as ! ! !

1 computerin a rack
for 120 hours

120 computers in three
racks for 1 hour

= Elastic, usage based pricing turns capex into opex.
= Clouds can be used to manage surges in computing needs.

Simplicity Offered By the Cloud is New
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I r + .. and you have a computer
e e ready to work.
moey o
A new programmer can develop a : L

program to process a container full of
data with less than day of training using @l E
MapReduce. '
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Two Architectural Models

= On-demand resources & services over a
network at the scale of a data center

= On-demand computing instances (laaS)
— laaS: Amazon EC2, S3, etc.; Eucalyptus
— supports many Web 2.0 applications/users

= On-demand computing capacity (Paa$)
— Clouds services to support large data clouds
— GFS/MapReduce/Bigtable, Hadoop, Sector, ...
— Manage 10 TB, 100 TB, 500 TB, 1PB, 5PB, ...

Ease of use — With Google’s GFS &
MapReduce, it is simple to compute
with 10 terabytes of data over 100
nodes. With Amazon’s AMls, it is
simple to respond to a surge of 100
additional web servers.

Goug[e” amazon

webservices”
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How Do You Fill a Data Center?

Cloud Architectures —
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Part 1.2 Cloud Computing Industry

Cloud computing is
approaching the top of
the Gartner hype cycle.

L]

BIG SWITCH

= “Cloud computing has become the center of
investment and innovation.”
Nicholas Carr, 2009 IDC Directions

Cloud Computing Eco-System

= No agreed upon terminology
= Vendors supporting data centers

= Vendors providing cloud apps & services to
end users

= Vendors supporting the industry i.e. those
developing cloud applications and services for
themselves or to sell to end users

= Communities developing software, standards,
benchmarks, etc.
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Cloud Computing Ecosystem

Consumers of Software as a Service

Providers of Software as a Service
Data Centers

Consumers of Cloud Services

Providers of Cloud Services

= Berkeley RAD Report on cloud computing
divides industry into these layers.

Building Data Centers

= Sun’s Modular
Data Center (MD)

= Formerly Project
Blackbox

= Containers used by
Google, Microsoft
& others

Cookng watir sapgly: B0 gallons per minete
Computhg capachy: 7 terabytes
[Datasineage: 2 pelatrytes

= Data center
consists of 10-60+
containers.
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Part 1.3

Virtualization

Virtualization

= Virtualization separates logical infrastructure
from the underlying physical resources to
decrease time to make changes, improve
flexibility, improve utilization and reduce
costs

= Example - server virtualization. Use one
physical server to support multiple logical
virtual machines (VMs), which are sometimes
called logical partitions (LPARs)

= Technology pioneered by IBM in 1960s to

329



MIT Information Quality Industry Symposium, July 15-17, 2009

Idea Dates Back to the 1960s

App App App
CMS MVS CMS
IBM VM/370

IBM Mainframe

Native (Full) Virtualization
Examples: Vmware ESX

Two Types of Virtualization

Apps ' | 1 | Apps
Unmodified | Unmeodified Medified Meodified
Guest OS1 | Guest OS2 Guest OS1 | Guest OS 2
Hyperviser Hyperviser
Physical Hardware Physical Hardware
Native (Full) Virtualization Para Virtualization
Examples: Vmware ESX Examples: Xen

= Using the hypervisor, each guest OS sees its own
independent copy of the CPU, memory, 10, etc.
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Part 2

Cloud Architectures for Analytics to
Support Data Quality ...

A

... and why you should care.

Part 2.1

What is Analytics Infrastructure?
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What is the Size of Your Data?

= Small

— Fits into memory
= Medium

— Too large for memory

— But fits into a database

— N.B. databases are designed for safe writing of rows
= lLarge

— To large for a database

— But can use specialized file system (column-wise)

—Or storaie cloud (Gooile File Sistem, Hadooi DFS)

What is the Shape of Your Data
——

rows

. . . . unstructured

events

semi-structured

332



MIT Information Quality Industry Symposium, July 15-17, 2009

(Very Simplified) Architectural View

>
m MOdEI
Data Producer

—

PMML
Model

= The Predictive Model Markup Language
(PMML) is an XML language for statistical and

data mining models.

= With PMML, it is easy to move models
between applications and platforms.

(Simplified) Architectural View

Data Pre-
processing

algorithms to

estimate models

—

features

= PMML also supports XML elements
to describe data preprocessing.
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Three Important Interfaces

Modeling Environment

>
B

1 1

Data Pre-
processing

—

™

Model l“_"'I:f PMML
Producer Model

2

2 PMML Deployment Environment
Q Model
1 3 3
> Model :D Post |:_>
Consumer ] Processing .
data scores actions
Actually, This is a Typically a
Component in a Workflow
=- =
—
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Analytic Infrastructure

= We'll use the term analytic infrastructure to
refer to the components, services,
applications and platforms for managing data,
preprocessing data, producing models,
consuming models, post-processing scores,
managing workflow, and related processes.

~

With the proper analytic infrastructure, cloud
computing can be used for data preprocessing,
for scoring, for producing models, and as a
platform for other services in the analytic
infrastructure.
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Part 2.2

Cloud Programming Models for Analyzing
Information Quality in Large Data

Google

l‘ | Advanced Search

- Prefere
fGoagIe SearchYI'm Feeling Lucky | Language Tools

Advertising Programs - Business Solutions - About Google

2008 - Privacy

The Google Data Stack

= The Google File System (2003)
= MapReduce: Simplified Data Processing... (2004)
= BigTable: A Distributed Storage System... (2006)
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Map-Reduce Example

= |nput is file with one document per record

= User specifies map function
— key = document URL
— Value = terms that document contains

”it”, 1

(“doc cdickens”, q “was”, 1
i “the”, 1

“it was the best of times”) ma
p ”beSt", 1

Example (cont’d)

= MapReduce library gathers together all pairs
with the same key value (shuffle/sort phase)

= The user-defined reduce function combines all
the values associated with the same key

key = “it”

values=1,1 ‘ “it” 2
key = “was” “was”, 2
values=1,1 “best”, 1

reduce “ ”
key = “best” worst”, 1

values=1
key = “worst”
values=1
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Map Reduce Summary

= All data is sequence of <key, value> pairs.

= Programmer specifies
— Data is split and provided to Map.

— Map takes input pair and produces a set of intermediate
key-value pairs

— MapReduce library takes all intermediate key value pairs
with same key K and passes them to reduce function

— Reduce function takes key K and collection of values and
merges these values together. Input to Reduce need not fit
in memory.

— The Reduce functions produce the output.

MapReduce

k v Partition 1 -
ppe—l

\ Map 1 \

\ Partition r

Partition 1

Reduce 1

==
==
B ==
==
—
==

/' N _

Map m
_— Partition r ~

Intermediate data

/ - Reduce r

Output data

Input data
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Generalization: Apply User Defined
Functions (UDF) to Files in Storage Cloud

map/shuffle reduce

UDF

UDF

Sector (sector.sf.net) is an open source cloud with security that supports UDFs
over the data in a storage cloud.

Part 2.3

Using Clouds for Information Quality
Scoring (Model Consumers)

Contact Us O Create an AWS Account
amazon
webservices” About AWS Products Solutions Resources Support Your Account
Get Started
Sign up for a free AWS account.
Amazon EC2 with IBM by the Hour ===
Pay as you go or bring your own IBM license. = = ===
=== Developers

» Learn more
Simply sign up & start developing in
d

the cloud with these resources ani
tools:

AWS Management Console
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What is a Statistical/Data Mining Model?

= Inftrastructure
— Inputs: data attributes, mining attributes
— Outputs, targets
— Transformations
— Segmented models, ensembles of models
= Models that are part of a standard
— Trees, SVMs, neural networks, cluster models, etc.

— In this case, only need to specify parameters

= Arbitrary models

— e.g. arbitrary code that takes inputs to outputs

From an Architectural Viewpoint

= |[n an operational environment in which
models are being deployed, it may be useful
to “Just so no to viewing models as arbitrary
code”

= The deployment can be much shorter if a
scoring engine reads a PMML file instead of
integrating a new piece of code containing a
model.
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Model Producers/Consumers in Clouds

= Model Consumers take analytic models and use
them to score data

— Very easy to deploy in a cloud

— Deploy a scoring engine in a cloud and then simply
read PMML files

— Very easy to scale up with cloud surges

= Model Producers take data and produce models

— The decision to use a cloud requires weighing several
factors

— More difficult to parallelize

Sometimes it makes sense to the

Modeling can be done in-

pre-processing in the cloud, house.
especially if the data is there.
Data Pre- Model : PMML
processing w Producer Model
PMML
Model Scoring engine deployed in a
{l cloud.
Model Post

data

Consumer

w—

scores

Processing

E—

actions
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Scoring Engines

= |IBM and SPSS have scoring engines

= Augustus
(www.sourceforge.net/projects/augustus) is
an open source PMML-compliant scoring
engine.

= Zemantis has a scoring application that is
already deployed in the Amazon cloud.

Part 3
Case Study: Baseline Models
for Data Quality

ALt e,

Joint work with Joe Bugajski, Burton Group
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3.1 Problem

= How can we monitor, baseline, alert, and ameliorate
data quality for high volume transaction systems?

= How can we tell when there are statistically
significant changes with significant business or

operational value? v’SA

= Examples:
— Payment systems pie
— Distributed sensor systems 1
— Cyber defense systems

Example 1: Payment Systems

Account Issuing Bank

v

-—

Merchant v’SA \ Me_rcb_ant Bank

8000+ peak transactions per second.
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Example 2: Highway Traffic Data

S Ty SRR Real-time Camera Snapshot
I-290/IL53 & Higgins (N)
Provides view of I-290/IL 53 south of Higgins Rd, looking north

real-time and distributes them as alerts.

833 traffic sensors, 170,000 new sensor readings per day
also image, text & semi-structured data (about 1 TB)

Challenges

= Llarge, high volume, complex,
heterogeneous, distributed streaming
data

= Multiple parties involved, each of which
can modify the data in subtle ways

= System is sufficiently complex that
establishing accuracy and other data
quality dimensions is a challenge
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Motivating Questions

= Are the payment field values and payment fields
exceptions from this merchant (Starbucks, Cambridge,
November, weekend etc.) different than the baseline?

= s this traffic speed and volume today leaving this
meeting (Thursday, July 16, 9 am, no special events, no
rain) different than the baseline?

= Approach:

— Establish baselines for each data quality dimension
(completeness, declines, consistency, etc.)

— Detect deviations from the baselines

Change in Perspective

Small, well understood [Large, less well

systems understood systems
Begin Specify what an accurate, Divide and conquer using a

complete, current & data cube; establish

consistent (etc.) record baselines for each cell in

data cube; compare
baselines across cells

Monitor Data quality dimensions Monitor changes to
(accuracy, completeness, |baselines
etc.)
Root cause [ldentify root causes of Identify root causes of
analysis & |dentified data quality identified differences in

amelioration [problems and ameliorate  paselines and ameliorate

345



MIT Information Quality Industry Symposium, July 15-17, 2009

3.2 Baselines Distributions

Baseline/Peer Observed
Distribution Distribution

/'
]

G ——

B

= Question: is the observed distribution different than the
baseline distribution?

= Used CUSUM, Generalized Likelihood Ratio (GLR), threshold,
and contingency table tests

Example: Single-Variant Distribution Changes

Baseline Model Observed Model

Value Percentage Value Percentage

90 76.94 90 76.04

01 21.60 oL 2067

05 0.99

00 027 0 090

02 0.20 00 0.25

Total 100.00 02 1.24
Total 100.00
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Example: Bivariate Distribution Changes

Observed Model

Baseline Model Value Percentage
Value Percentage %0, - 0.13
90, - 0.13 90, blank 0.63
90, blank 0.21 05, - 0.01
05, - 0.01 00, blank 0.11
05, blank 001 etc. etc.
etc. etc. Total 100.00
Total 100.00

Example - Conditioned Distribution Changes

= We usually condition upon
business events of interest
— For example, declines
= We also generally use a
peer population to
understand whether a
change has significance

— |Issuers in the same

region

— Merchants of the same Build baseline models
Merchant Category Class condition on declines
(Mce)

— etc.
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Idea 2: Scale with Data Cubes of Separate
Baseline Models

4 Geospatial
Change Detection Using Cubes of region
Models (CDCM) -
Divide & conquer data (segment) using
multidimensional data cubes . -
Entity >
For each distinct cube, establish (bank
separate baselines for each ! Type of
quantify of interest etc.) Transactio
Detect changes from baselines n

Estimate separate baselines for each
quantify of interest

PMML 4.0 has standardized multiple models to support data cubes of models applications.

examples - Change Detection Using Cubes of
Models

* Visa Payment Systems

— each field (21+) x each acquirer (thousands) x
each merchants (thousands+)

— 1,000,000+ baseline models used
= Highway Traffic Data

— each day (7) x each hour (24) x each sensor
(hundreds) x each weather condition (5) x each
special event (dozens)

— 50,000 baselines models used in current
testbed
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Greedy Meaningful/Manageable
Balancing (GMMB) Algorithm

Breakpoint
* More alerts * Fewer alerts
. Aler_ts more 4 e Alerts more
mean_lngful manageable
» To increase alerts, *To decrease alerts,
add b_reakpomt remove breakpoint,
to split cubes, One_model for each order by number
order by number cell in data cube of decreased alerts,
of new alerts, & & select one or more
select one or more breakpoints to remove
new breakpoints v

For More Information

el
Contact information: open data

Robert Grossman www.opendatagroup.com
blog.rgrossman.com

wWww.rgrossman.com UIc

www.ncdm.uic.edu
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